Search
You can find the results of your search below.
Matching pagenames:
Fulltext results:
- Question 10, Exercise 8.1
- ====== Question 10, Exercise 8.1 ====== Solutions of Question 10 of Exercise 8.1 of Unit 08: Fundamental of Trigonometry... ook Board, Islamabad, Pakistan. ===== Question 10(i)===== Verify: $\sin \left(\dfrac{\pi}{2}-\alph... s\alpha = R.H.S \end{align*} GOOD ===== Question 10(ii)===== Verify: $\cos (\pi-\alpha)=-\cos \alpha
- Question 2(i, ii, iii, iv and v) Exercise 8.3
- \frac{70-30}{2} \right) \\ & = 2 \sin \left(\frac{100}{2} \right) \cos \left(\frac{40}{2} \right) \\ &... difference as a product of two function: $\sin (-10^{\circ}) + \sin (-20^{\circ})$ ** Solution. ** \begin{align*} &\quad \sin (-10^{\circ}) + \sin (-20^{\circ}) \\ & = -\sin 10^{\circ} - \sin 20^{\circ} \\ & = -\left( \sin 10^{\circ
- Question 10, Review Exercise
- ====== Question 10, Review Exercise ====== Solutions of Question 10 of Review Exercise of Unit 08: Fundamental of Trigon... tbook Board, Islamabad, Pakistan. =====Question 10(i)===== Prove that: $\sin (16 x)=16 \sin (x) \cos... \sin16 (x) \\ &= LHS \end{align*} =====Question 10(ii)===== Prove that: $$\frac{1+\cos 2 \theta}{\si
- Question 7, Review Exercise
- =====Question 7(ii)===== Show that: $\dfrac{\sin 10 \theta-\sin 4 \theta}{\sin 4 \theta+\sin 2 \theta... ** Solution. ** \begin{align*} LHS&=\frac{\sin 10 \theta - \sin 4 \theta}{\sin 4 \theta + \sin 2 \theta} \\ &= \frac{2 \cos \left( \frac{10 \theta + 4 \theta}{2} \right) \sin \left( \frac{10 \theta - 4 \theta}{2} \right)}{2 \sin \left( \frac
- Question 4 Exercise 8.2
- qrt{\frac{\dfrac{8}{5}}{2}} \\ & = \sqrt{\frac{8}{10}} \\ & = \frac{2}{\sqrt{5}}. \end{align*} \begin{... qrt{\dfrac{\frac{2}{5}}{2}} \\ & = \sqrt{\frac{2}{10}} \\ & = \frac{1}{\sqrt{5}}. \end{align*} \begin{
- Question 1(i, ii, iii & iv) Exercise 8.3
- -to-sum formula to change the sum or difference: $10 \cos 10y \cos 6y$. ** Solution. ** \begin{align*} &10 \cos 10y \cos 6y \\ &= 5(2 \cos 10y \cos 6y) \\ &
- Question 1, Review Exercise
- $1+\cos \sin 2 x$ \\ <btn type="link" collapse="a10">See Answer</btn><collapse id="a10" collapsed="true">%%(c)%%: $1-\sin 2 x$</collapse> xi. $\cos \le
- Question 9, Exercise 8.1
- text align="right"><btn type="success">[[math-11-nbf:sol:unit08:ex8-1-p9|Question 10 >]]</btn></text>
- Question 11, Exercise 8.1
- ary">[[math-11-nbf:sol:unit08:ex8-1-p9|< Question 10 ]]</btn></text> <text align="right"><btn type="su
- Question 12, Exercise 8.1
- tn type="primary">[[math-11-nbf:sol:unit08:ex8-1-p10|< Question 11 ]]</btn></text> <text align="right"
- Question 8(x, xi & xii) Exercise 8.2
- ht"><btn type="success">[[math-11-nbf:sol:unit08:ex8-2-p10|Question 8(xiii, xiv & xv) >]]</btn></text>
- Question 8(xvi, xvii & xviii) Exercise 8.2
- tn type="primary">[[math-11-nbf:sol:unit08:ex8-2-p10|< Question 8(xiii, xiv & xv) ]]</btn></text> <tex
- Question 3(i, ii, iii, iv & v) Exercise 8.3
- dfrac{6 \cos 8u \sin 2u}{\sin (-6u)}=-\dfrac{\sin 10 u}{\sin 6u}+3$ ** Solution. ** \begin{align*} R
- Question 4 Exercise 8.3
- n 70^{\circ} \sin 50^{\circ} \sin 30^{\circ} \sin 10^{\circ}=\dfrac{1}{16}$ ** Solution. ** Do youse
- Question 9, Review Exercise
- text align="right"><btn type="success">[[math-11-nbf:sol:unit08:Re-ex-p9|Question 10 >]]</btn></text>