Search
You can find the results of your search below.
Fulltext results:
- Exercise 2.6 (Solutions)
- dot\sqrt{-3} = 3$\\ (ii) $i^{73}=-i$\\ (iii) $i^{10} = -1$\\ (iv) Complex conjugate of $(-6i + i^2) ... (ii) $$\begin{array}{cl} 2(5+4i)-3(7+4i) &= 10+8i-21-12i\\ &= 10-21+8i-12i\\ &= -11-4i \end{array}$$ (iii) $$\begin{array}{cl} -(-3+5i)-(4+... = 2(3-2i)-2i(3-2i)\\ &= 6-4i-6i+4i^2\\ &= 6-10i+4(-1)\\ &= 6-4-10i\\ &= 2-10i \end{array}$
- Exercise 2.1 (Solutions)
- )$$ Only one digit 5 is being repeated, multiply 10 on both sides $$10x = (0.5555.....) \times 10$$ $$10x = 5.5555..... \qquad (2)$$ Subtract (1) from (2), we get $$9x = 5$$ $$\therefore \,\, x = \
- Exercise 2.4 (Solutions)
- ^{{-1}\times\frac{1}{2}}}\\ &= \frac{3^{\frac{-10}{3}}2^{-1}}{14^{-1}}\\ &= \frac{3^\frac{-10}{3}2^{-1}}{2^{-1}\times7^{-1}}\\ &= \frac{3^{\frac{-10}{3}}}{7^{-1}}\\ &= \frac{7}{3^{\frac{10}{3}}}\\ &= \frac{7}{3^{(9)\times\frac{1}{3}}\times3^\fr