Search
You can find the results of your search below.
Matching pagenames:
Fulltext results:
- Question 1, Exercise 1.3 @fsc-part1-kpk:sol:unit01
- plex coefficient. \begin{align}&z-4w=3i\\ &2z+3w=11-5i\end{align} ====Solution==== Given that \begin{align}z-4w&=3i …(i)\\ 2z+3w&=11-5i …(ii)\end{align} Multiply $2$ by (i), we get\\... s_{-}3w&=\mathop-\limits_{+}5i&\mathop+\limits_{-}11 \\ \hline 0&-11w&=11i &-11\\ \end{array} \] \begin{align}-11w&=11i-11\\ \implies w&=\dfrac{11-11i}{
- Question 1, Exercise 1.1 @fsc-part1-kpk:sol:unit01
- 1 \right)\cdot i\cdot{{\left( {{i}^{2}} \right)}^{11}}\\ &=-i\cdot{{\left( {{i}^{2}} \right)}^{11}}\\ &=-i\cdot{{\left( -1 \right)}^{11}}\\ &=-i\cdot\left( -1 \right)\\ &=i\end{align} =====Question ... {-23}}\\ &=\frac{1}{i{{\left( {{i}^{2}} \right)}^{11}}}\\ &=\frac{1}{i{{\left( -1 \right)}^{11}}}\\ &=
- Question 11, Exercise 1.1 @fsc-part1-kpk:sol:unit01
- ====== Question 11, Exercise 1.1 ====== Solutions of Question 11 of Exercise 1.1 of Unit 01: Complex Numbers. This is un... (KPTB or KPTBB) Peshawar, Pakistan. =====Question 11(i)===== Let ${{z}_{1}}=2-i$, ${{z}_{2}}=-2+i$. ... }_{1}}}} \right)=\dfrac{-2}{5}.$$ =====Question 11(ii)===== Let $z_1=2-i$. Find ${\rm Im}\left( \dfr
- Question11 and 12, Exercise 10.1 @fsc-part1-kpk:sol:unit10
- ====== Question11 and 12, Exercise 10.1 ====== Solutions of Question 11 and 12 of Exercise 10.1 of Unit 10: Trigonometric... (KPTB or KPTBB) Peshawar, Pakistan. =====Question 11===== If $\alpha$, $\beta$, $\gamma$ are the angle... align="right"><btn type="success">[[fsc-part1-kpk:sol:unit10:ex10-1-p11|Question 13 >]]</btn></text>
- Unit 10: Trigonometric Identities of Sum and Difference of Angles (Solutions)
- === This is a tenth unit of the book Mathematics 11 published by Khyber Pakhtunkhwa Textbook Board, P... * [[fsc-part1-kpk:sol:unit10:ex10-1-p10|Question 11-12]] * [[fsc-part1-kpk:sol:unit10:ex10-1-p11|Question 13]] </panel> <panel type="default" title="Ex
- Question 5, Exercise 1.1 @fsc-part1-kpk:sol:unit01
- uestion 5(i)===== Multiply the complex number $8i+11,-7+5i$. ====Solution==== \begin{align}&(8i+11)\times (-7+5i)\\ &=\left( 11+8i \right)\times \left( -7+5i \right)\\ &=\left( -77+40{{i}^{2}} \right)... =\left( -77-40 \right)+\left( 55-56 \right)i\\ &=-117-i\end{align} =====Question 5(ii)===== Multiply
- Question 5, Exercise 1.3 @fsc-part1-kpk:sol:unit01
- rac{-1\pm \sqrt{1-12}}{2}\\ z&=\dfrac{-1\pm \sqrt{11}}{2}i\\ z&=-\dfrac{1}{2}+\dfrac{\sqrt{11}}{2}i,-\dfrac{1}{2}-\dfrac{\sqrt{11}}{2}i\end{align} =====Question 5(ii)===== Find the solutions of
- Unit 1: Complex Numbers (Solutions)
- === This is a first unit of the book Mathematics 11 published by Khyber Pakhtunkhwa Textbook Board, P... * [[fsc-part1-kpk:sol:unit01:ex1-1-p9|Question 11]] </panel> <panel type="default" title="Exercise
- Question 9 & 10, Exercise 1.1 @fsc-part1-kpk:sol:unit01
- t align="right"><btn type="success">[[fsc-part1-kpk:sol:unit01:ex1-1-p9|Question 11 >]]</btn></text>
- Question, Exercise 10.1 @fsc-part1-kpk:sol:unit10
- - \dfrac{5}{12}}{1+ \dfrac{20}{36}}=\dfrac{\dfrac{11}{12}}{ \dfrac{56}{36}}\\ \Rightarrow \quad \tan \
- Question 9 and 10, Exercise 10.1 @fsc-part1-kpk:sol:unit10
- gn="right"><btn type="success">[[fsc-part1-kpk:sol:unit10:ex10-1-p10|Question 11,12 >]]</btn></text>
- Question 13, Exercise 10.1 @fsc-part1-kpk:sol:unit10
- lign="left"><btn type="primary">[[fsc-part1-kpk:sol:unit10:ex10-1-p10|< Question 11,12]]</btn></text>