Search
You can find the results of your search below.
Matching pagenames:
- Question 1 and 2 Exercise 6.1
- Question 3 & 4 Exercise 6.1
- Question 5 Exercise 6.1
- Question 4 Exercise 6.1
- Question 5 Exercise 6.1
- Question 1 and 2 Exercise 6.2
- Question 3 and 4 Exercise 6.2
- Question 5 and 6 Exercise 6.2
- Question 7 and 8 Exercise 6.2
- Question 9 Exercise 6.2
- Question 10 Exercise 6.2
- Question 11 Exercise 6.2
- Question 12 Exercise 6.2
- Question 13 Exercise 6.2
- Question 14 and 15 Exercise 6.2
- Question 1 Exercise 6.3
- Question 2 Exercise 6.3
- Question 3 Exercise 6.3
- Question 4 Exercise 6.3
- Question 5 and 6 Exercise 6.3
- Question 7 and 8 Exercise 6.3
- Question 9 Exercise 6.3
- Question 9 Exercise 6.3
- Question 1 Exercise 6.4
- Question 2 Exercise 6.4
- Question 3 Exercise 6.4
- Question 4 Exercise 6.4
- Question 5 Exercise 6.4
- Question 6 Exercise 6.4
- Question 7 Exercise 6.4
- Question 1 and 2 Exercise 6.5
- Question 3 and 4 Exercise 6.5
- Question 5 and 6 Exercise 6.5
- Question 7 Exercise 6.5
- Question 8 Exercise 6.5
- Question 9 Exercise 6.5
- Question 10 Exercise 6.5
- Question 1 Review Exercise 6
- Question 2 Review Exercise 6
- Question 3 & 4 Review Exercise 6
- Question 5 & 6 Review Exercise 6
- Question 7 & 8 Review Exercise 6
- Question 9 & 10 Review Exercise 6
- Question 11 Review Exercise 6
Fulltext results:
- Question 1 and 2 Exercise 6.2
- \Rightarrow n^2-7 n-44&=0 \\ \Rightarrow n^2+4 n-11 n-44&=0 \\ \Rightarrow n(n+4)-11(n+4)&=0 \\ \Rightarrow(n-11)(n+4)&=0\\ n=11& \text{or}\quad n=-4\end{align} But $n$ can not be negative, so $n=11$. =====Questio
- Question 8 Exercise 6.5
- bility that the sum of digits is neither $7$ nor $11.$ Solution: The sample space rolling a pair of di... {36}$$ The probability that the sum of number is $11$ is: $$=\dfrac{2}{36}$$ The events that the sum is $7$ or $11$ are mutually exclusive, therefore by addition l... bility that sum of the digits is neither $7$ nor $11$ is: $$=1-\dfrac{2}{9}=\dfrac{7}{9}$$ ====G
- Question 11 Exercise 6.2
- ====== Question 11 Exercise 6.2 ====== Solutions of Question 11 of Exercise 6.2 of Unit 06: Permutation, Combination and... KPTB or KPTBB) Peshawar, Pakistan. =====Question 11===== How many numbers each lying between $10$ and... === <text align="left"><btn type="primary">[[math-11-kpk:sol:unit06:ex6-2-p6 |< Question 10 ]]</btn></
- Question 11 Review Exercise 6
- ====== Question 11 Review Exercise 6 ====== Solutions of Question 11 of Review Exercise 6 of Unit 06: Permutation, Combi... KPTB or KPTBB) Peshawar, Pakistan. =====Question 11===== Given the following spinner, determine the p... === <text align="left"><btn type="primary">[[math-11-kpk:sol:unit06:Re-ex6-p6 |< Question 9 & 10 ]]</b
- Question 10 Exercise 6.2
- === <text align="left"><btn type="primary">[[math-11-kpk:sol:unit06:ex6-2-p5 |< Question 9 ]]</btn></t... t> <text align="right"><btn type="success">[[math-11-kpk:sol:unit06:ex6-2-p7|Question 11 >]]</btn></text>
- Question 12 Exercise 6.2
- === <text align="left"><btn type="primary">[[math-11-kpk:sol:unit06:ex6-2-p7 |< Question 11 ]]</btn></text> <text align="right"><btn type="success">[[math-11-kpk:sol:unit06:ex6-2-p9|Question 13 >]]</btn></te
- Question 2 Exercise 6.3
- 30=0\end{align} $\Rightarrow n=\dfrac{3 \pm \sqrt{111} i}{2}$ But $n$ can not be complex. hence the on... === <text align="left"><btn type="primary">[[math-11-kpk:sol:unit06:ex6-3-p1 |< Question 1 ]]</btn></t... t> <text align="right"><btn type="success">[[math-11-kpk:sol:unit06:ex6-3-p3|Question 3 >]]</btn></tex
- Question 9 Exercise 6.5
- \Rightarrow P(A \cup B)&=\dfrac{5+7-1}{35}=\dfrac{11}{35} \end{align} ====Go To==== <text align="left"><btn type="primary">[[math-11-kpk:sol:unit06:ex6-5-p5 |< Question 8 ]]</btn></t... t> <text align="right"><btn type="success">[[math-11-kpk:sol:unit06:ex6-5-p7|Question 10 >]]</btn></te
- Question 3 & 4 Review Exercise 6
- &=\dfrac{12 !}{4 ! 3 ! 5 !} \\ & =\dfrac{12 \cdot 11 \cdot 10 \cdot 9 \cdot 8 \cdot 7 \cdot 6 \cdot 5 ... === <text align="left"><btn type="primary">[[math-11-kpk:sol:unit06:Re-ex6-p2 |< Question 2 ]]</btn></... t> <text align="right"><btn type="success">[[math-11-kpk:sol:unit06:Re-ex6-p4|Question 5 & 6 >]]</btn>
- Question 9 & 10 Review Exercise 6
- === <text align="left"><btn type="primary">[[math-11-kpk:sol:unit06:Re-ex6-p5 |< Question 7 & 8 ]]</bt... t> <text align="right"><btn type="success">[[math-11-kpk:sol:unit06:Re-ex6-p7|Question 11 >]]</btn></text>
- Question 3 & 4 Exercise 6.1
- === <text align="left"><btn type="primary">[[math-11-kpk:sol:unit06:ex6-1-p1 |< Question 1 & 2 ]]</btn... t> <text align="right"><btn type="success">[[math-11-kpk:sol:unit06:ex6-1-p3|Question 5 >]]</btn></tex
- Question 4 Exercise 6.1
- === <text align="left"><btn type="primary">[[math-11-kpk:sol:unit06:ex6-1-p3 |< Question 3 ]]</btn></t... t> <text align="right"><btn type="success">[[math-11-kpk:sol:unit06:ex6-1-p5|Question 5 >]]</btn></tex
- Question 3 and 4 Exercise 6.2
- === <text align="left"><btn type="primary">[[math-11-kpk:sol:unit06:ex6-2-p1 |< Question 1 & 2 ]]</btn... t> <text align="right"><btn type="success">[[math-11-kpk:sol:unit06:ex6-2-p3|Question 5 & 6 >]]</btn><
- Question 5 and 6 Exercise 6.2
- === <text align="left"><btn type="primary">[[math-11-kpk:sol:unit06:ex6-2-p2 |< Question 3 & 4 ]]</btn... t> <text align="right"><btn type="success">[[math-11-kpk:sol:unit06:ex6-2-p4|Question 7 & 8 >]]</btn><
- Question 7 and 8 Exercise 6.2
- === <text align="left"><btn type="primary">[[math-11-kpk:sol:unit06:ex6-2-p3 |< Question 5 & 6 ]]</btn... t> <text align="right"><btn type="success">[[math-11-kpk:sol:unit06:ex6-2-p5|Question 9 >]]</btn></tex