Search
You can find the results of your search below.
Matching pagenames:
- Question 1, Exercise 10.1
- Question 2, Exercise 10.1
- Question 3, Exercise 10.1
- Question, Exercise 10.1
- Question 5, Exercise 10.1
- Question 6, Exercise 10.1
- Question 7, Exercise 10.1
- Question 8, Exercise 10.1
- Question 9 and 10, Exercise 10.1
- Question11 and 12, Exercise 10.1
- Question 13, Exercise 10.1
- Question 1, Exercise 10.2
- Question 2, Exercise 10.2
- Question 3, Exercise 10.2
- Question 4 and 5, Exercise 10.2
- Question 6, Exercise 10.2
- Question 7, Exercise 10.2
- Question 8 and 9, Exercise 10.2
- Question 1, Exercise 10.3
- Question 2, Exercise 10.3
- Question 3, Exercise 10.3
- Question 5, Exercise 10.3
- Question 5, Exercise 10.3
- Question 1, Review Exercise 10
- Question 2 and 3, Review Exercise 10
- Question 4 & 5, Review Exercise 10
- Question 6 & 7, Review Exercise 10
- Question 8 & 9, Review Exercise 10
Fulltext results:
- Question 2, Exercise 10.2
- [4px,border:2px solid black]{\cos 2\theta=-\dfrac{119}{169}.}$$ =====Question 2(iii)===== If $\sin ... ^{2}}\\ &=\dfrac{144}{169}-\dfrac{25}{169}=\dfrac{119}{169}.\end{align} Now \begin{align}\tan 2\theta... \cos 2\theta }\\ &=\dfrac{\frac{-120}{169}}{\frac{119}{169}}\end{align} $$\implies \bbox[4px,border:2px solid black]{\tan 2\theta=-\dfrac{120}{119}}$$ ====Go to==== <text align="left"><btn type="
- Question 6, Exercise 10.2
- e half angle identities to evaluate exactly $sin{{112.5}^{\circ }}$. ====Solution==== Because ${{112.5}^{\circ }}=\dfrac{{{225}^{\circ }}}{2}$, the $\dfra... dfrac{{{225}^{\circ }}}{2}$, so we can find $sin{{112.5}^{\circ }}$by using half angle identity as, \begin{align} sin{{112.5}^{\circ }}&=\sin \dfrac{{{225}^{\circ }}}{2}=\
- Question11 and 12, Exercise 10.1
- d 12, Exercise 10.1 ====== Solutions of Question 11 and 12 of Exercise 10.1 of Unit 10: Trigonometric... (KPTB or KPTBB) Peshawar, Pakistan. =====Question 11===== If $\alpha$, $\beta$, $\gamma$ are the angle... === <text align="left"><btn type="primary">[[math-11-kpk:sol:unit10:ex10-1-p9|< Question 9,10]]</btn><... t> <text align="right"><btn type="success">[[math-11-kpk:sol:unit10:ex10-1-p11|Question 13 >]]</btn></
- Question, Exercise 10.1
- - \dfrac{5}{12}}{1+ \dfrac{20}{36}}=\dfrac{\dfrac{11}{12}}{ \dfrac{56}{36}}\\ \Rightarrow \quad \tan \... n} <text align="left"><btn type="primary">[[math-11-kpk:sol:unit10:ex10-1-p3|< Question 3]]</btn></te... t> <text align="right"><btn type="success">[[math-11-kpk:sol:unit10:ex10-1-p5|Question 5 >]]</btn></te
- Question 9 and 10, Exercise 10.1
- n} <text align="left"><btn type="primary">[[math-11-kpk:sol:unit10:ex10-1-p8|< Question 8]]</btn></te... t> <text align="right"><btn type="success">[[math-11-kpk:sol:unit10:ex10-1-p10|Question 11,12 >]]</btn></text>
- Question 2, Exercise 10.3
- {\circ }}}{2} \right)\\ &=-2\sin \left( \dfrac{{{118}^{\circ }}}{2} \right)\sin \left( \dfrac{-{{46}^... === <text align="left"><btn type="primary">[[math-11-kpk:sol:unit10:ex10-3-p1|< Question 1]]</btn></te... t> <text align="right"><btn type="success">[[math-11-kpk:sol:unit10:ex10-3-p3|Question 3 >]]</btn></te
- Question 2, Exercise 10.1
- === <text align="left"><btn type="primary">[[math-11-kpk:sol:unit10:ex10-1-p1|< Question 1]]</btn></te... t> <text align="right"><btn type="success">[[math-11-kpk:sol:unit10:ex10-1-p3|Question 3 >]]</btn></te
- Question 3, Exercise 10.1
- } <text align="left"><btn type="primary">[[math-11-kpk:sol:unit10:ex10-1-p2|< Question 2]]</btn></te... t> <text align="right"><btn type="success">[[math-11-kpk:sol:unit10:ex10-1-p4|Question 4 >]]</btn></te
- Question 5, Exercise 10.1
- $$ <text align="left"><btn type="primary">[[math-11-kpk:sol:unit10:ex10-1-p4|< Question 4]]</btn></te... t> <text align="right"><btn type="success">[[math-11-kpk:sol:unit10:ex10-1-p6|Question 6 >]]</btn></te
- Question 6, Exercise 10.1
- } <text align="left"><btn type="primary">[[math-11-kpk:sol:unit10:ex10-1-p5|< Question 5]]</btn></te... t> <text align="right"><btn type="success">[[math-11-kpk:sol:unit10:ex10-1-p7|Question 7 >]]</btn></te
- Question 7, Exercise 10.1
- } <text align="left"><btn type="primary">[[math-11-kpk:sol:unit10:ex10-1-p6|< Question 6]]</btn></te... t> <text align="right"><btn type="success">[[math-11-kpk:sol:unit10:ex10-1-p8|Question 8 >]]</btn></te
- Question 8, Exercise 10.1
- === <text align="left"><btn type="primary">[[math-11-kpk:sol:unit10:ex10-1-p7|< Question 7]]</btn></te... t> <text align="right"><btn type="success">[[math-11-kpk:sol:unit10:ex10-1-p9|Question 9,10 >]]</btn><
- Question 13, Exercise 10.1
- === <text align="left"><btn type="primary">[[math-11-kpk:sol:unit10:ex10-1-p10|< Question 11,12]]</btn></text>
- Question 3, Exercise 10.2
- === <text align="left"><btn type="primary">[[math-11-kpk:sol:unit10:ex10-2-p2|< Question 2]]</btn></te... t> <text align="right"><btn type="success">[[math-11-kpk:sol:unit10:ex10-2-p4|Question 4 >]]</btn></te
- Question 4 and 5, Exercise 10.2
- === <text align="left"><btn type="primary">[[math-11-kpk:sol:unit10:ex10-2-p3|< Question 3]]</btn></te... t> <text align="right"><btn type="success">[[math-11-kpk:sol:unit10:ex10-2-p5|Question 6 >]]</btn></te