Search
You can find the results of your search below.
Matching pagenames:
- Question 1, Exercise 5.1
- Question 2 and 3, Exercise 5.1
- Question 4 and 5, Exercise 5.1
- Question 6 and 7, Exercise 5.1
- Question 8 and 9, Exercise 5.1
- Question 10, Exercise 5.1
- Question 1 and 2, Exercise 5.2
- Question 3 and 4, Exercise 5.2
- Question 5 and 6, Exercise 5.2
- Question 7 and 8, Exercise 5.2
- Question 1, Exercise 5.3
- Question 2, Exercise 5.3
- Question 3, Exercise 5.3
- Question 4, Exercise 5.3
- Question 5, Exercise 5.3
- Question 6, Exercise 5.3
- Question 2, Review Exercise
- Question 1, Review Exercise
- Question 2 & 3, Review Exercise
- Question 4 & 5, Review Exercise
- Question 6 & 7, Review Exercise
- Question 8, Review Exercise
- Question 6, Review Exercise
- Question 7, Review Exercise
- Question 8, Review Exercise
Fulltext results:
- Question 4, Exercise 5.3
- $p(x)=2x^3-x^2-6x-2475.$$ Since \begin{align*} p(11)&=2(11)^3-11^2-6(11)-2475 \\ &=2662-121-66-2475 = 0 \end{align*} This gives $x=11$ is the zeros of $p(x)$. Thus w
- Question 8 and 9, Exercise 5.1
- === Find zeros of the polynomial $2 x^{3}+3 x^{2}-11 x-6$. ** Solution. ** Suppose $p(x)=2x^3+3x^2-11x-6$. \\ Since \begin{align} p(2) &= 2(2)^3+3(2)^2-11(2)-6 \\ &=16+12-22-6 = 0 \end{align} Hence 2 is z... \begin{align} \begin{array}{r|rrrr} 2 & 2 & 3 & -11 & -6 \\ & \downarrow & 4 & 14 & 6 \\ \hline & 2
- Question 10, Exercise 5.1
- = A rectangular room has a volume of $\left(x^{3}+11 x^{2}+34 x+24\right)$ cubic feet. The height of t... its floor. ** Solution. ** Suppose $p(x)=x^{3}+11 x^{2}+34 x+24$. By using synthetic division: \begin{align} \begin{array}{r|rrrr} -1 & 1 & 11 & 34 & 24 \\ & \downarrow & -1 & -10 & -24 \\ \... area of floor $\times$ height. $\implies x^{3}+11 x^{2}+34 x+24=(x^2+10x+24)(x+1)$ Hence area of f
- Question 5 and 6, Exercise 5.2
- & 16 & 12 \\ & & 4 & -22 & -12 \\ \hline & 2 & -11 & -6 & 0 \\ \end{array} \end{align} This gives: \begin{align*} f(x) &= (x - 2)(2x^{2} - 11x - 6). \end{align*} \begin{align*} 2x^{2} - 11x - 6 &= 2x^{2} - 12x + x - 6 \\ &= 2x(x - 6) + 1(x - 6... == <text align="left"><btn type="primary">[[math-11-nbf:sol:unit05:ex5-2-p2|< Question 3 & 4]]</btn>
- Question 5, Exercise 5.3
- amabad, Pakistan. =====Question 5===== {{ :math-11-nbf:sol:unit05:math-11-nbf-ex5-3-q5.png?nolink&400|Picture}} The area of rectangle ACED is represente... == <text align="left"><btn type="primary">[[math-11-nbf:sol:unit05:ex5-3-p4|< Question 4]]</btn></tex... t> <text align="right"><btn type="success">[[math-11-nbf:sol:unit05:ex5-3-p6|Question 6>]]</btn></text
- Question 3 and 4, Exercise 5.2
- -18 \\ & & -4 & -2 & 22 \\ \hline & 2 & 1 & -11 & 0 \\ \end{array} \] This gives: \begin{align*}... == <text align="left"><btn type="primary">[[math-11-nbf:sol:unit05:ex5-2-p1|< Question 1 & 2]]</btn>... t> <text align="right"><btn type="success">[[math-11-nbf:sol:unit05:ex5-2-p3|Question 5 & 6 >]]</btn><
- Question 2 and 3, Exercise 5.1
- == <text align="left"><btn type="primary">[[math-11-nbf:sol:unit05:ex5-1-p1|< Question 1 ]]</btn></te... t> <text align="right"><btn type="success">[[math-11-nbf:sol:unit05:ex5-1-p3|Question 4 & 5 >]]</btn><
- Question 4 and 5, Exercise 5.1
- == <text align="left"><btn type="primary">[[math-11-nbf:sol:unit05:ex5-1-p2|< Question 2 & 3 ]]</btn>... t> <text align="right"><btn type="success">[[math-11-nbf:sol:unit05:ex5-1-p4|Question 6 & 7 >]]</btn><
- Question 6 and 7, Exercise 5.1
- == <text align="left"><btn type="primary">[[math-11-nbf:sol:unit05:ex5-1-p3|< Question 4 & 5 ]]</btn>... t> <text align="right"><btn type="success">[[math-11-nbf:sol:unit05:ex5-1-p5|Question 8 & 9 >]]</btn><
- Question 2, Exercise 5.3
- == <text align="left"><btn type="primary">[[math-11-nbf:sol:unit05:ex5-3-p1|< Question 1]]</btn></tex... t> <text align="right"><btn type="success">[[math-11-nbf:sol:unit05:ex5-3-p3|Question 3 >]]</btn></tex
- Question 3, Exercise 5.3
- == <text align="left"><btn type="primary">[[math-11-nbf:sol:unit05:ex5-3-p2|< Question 2]]</btn></tex... t> <text align="right"><btn type="success">[[math-11-nbf:sol:unit05:ex5-3-p4|Question 4>]]</btn></text
- Question 2, Review Exercise
- == <text align="left"><btn type="primary">[[math-11-nbf:sol:unit05:Re-ex-p1|< Question 1]]</btn></tex... t> <text align="right"><btn type="success">[[math-11-nbf:sol:unit05:Re-ex-p3|Question 3>]]</btn></text
- Question 2 & 3, Review Exercise
- == <text align="left"><btn type="primary">[[math-11-nbf:sol:unit05:Re-ex-p1|< Question 1 ]]</btn></te... t> <text align="right"><btn type="success">[[math-11-nbf:sol:unit05:Re-ex-p3|Question 4 & 5>]]</btn></
- Question 4 & 5, Review Exercise
- == <text align="left"><btn type="primary">[[math-11-nbf:sol:unit05:Re-ex-p2|< Question 2 & 3]]</btn><... t> <text align="right"><btn type="success">[[math-11-nbf:sol:unit05:Re-ex-p4|Question 6 & 7>]]</btn></
- Question 6 & 7, Review Exercise
- == <text align="left"><btn type="primary">[[math-11-nbf:sol:unit05:Re-ex-p3|< Question 3 &4]]</btn></... t> <text align="right"><btn type="success">[[math-11-nbf:sol:unit05:Re-ex-p5|Question 8>]]</btn></text