Search
You can find the results of your search below.
Matching pagenames:
- Question 1, Exercise 3.2
- Question 2, Exercise 3.2
- Question 3 & 4, Exercise 3.2
- Question 5 & 6, Exercise 3.2
- Question 7, Exercise 3.2
- Question 7, Exercise 3.2
- Question 9 & 10, Exercise 3.2
- Question 11, Exercise 3.2
- Question 12, 13 & 14, Exercise 3.2
- Question 1, Exercise 3.3
- Question 2 and 3 Exercise 3.3
- Question 4 and 5 Exercise 3.3
- Question 6 Exercise 3.3
- Question 7 & 8 Exercise 3.3
- Question 9 & 10, Exercise 3.3
- Question 11, Exercise 3.3
- Question 12 & 13, Exercise 3.3
- Question 1 Exercise 3.4
- Question 2 Exercise 3.4
- Question 3 Exercise 3.4
- Question 4 Exercise 3.4
- Question 5 Exercise 3.4
- Question 6 Exercise 3.4
- Question 7 & 8 Exercise 3.4
- Question 9 Exercise 3.4
- Question 1 & 2 Exercise 3.5
- Question 3 & 4 Exercise 3.5
- Question 5(i) & 5(ii) Exercise 3.5
- Question 5(iii) & 5(iv) Exercise 3.5
- Question 6 Exercise 3.5
- Question 7 Exercise 3.5
- Question 8 Exercise 3.5
- Question 9 Exercise 3.5
- Question 1 Review Exercise 3
- Question 2 & 3 Review Exercise 3
- Question 4 & 5 Review Exercise 3
- Question 6 & 7 Review Exercise 3
- Question 8 & 9 Review Exercise 3
- Question 10 Review Exercise 3
Fulltext results:
- Question 2 & 3 Review Exercise 3
- j}-\hat{k}) \\ \Rightarrow \quad \vec{a}+\vec{b}&=11 \hat{i}-3 \hat{j} \\ \Rightarrow|\vec{a}+\vec{b}|&=\sqrt{(11)^2+(9)^2} \\ \Rightarrow|\vec{a}+\vec{b}|&=\sqrt{202}\\ &=\dfrac{11 \hat{i}-3 \hat{j}}{\sqrt{202}}\\ \text { Now } \h... ac{\vec{a}+\vec{b}}{|\vec{a}+\vec{b}|}\\ &=\dfrac{11 \hat{i}-3 \hat{j}}{\sqrt{202}}\\ &=\dfrac{1}{\sqr
- Question 11, Exercise 3.2
- ====== Question 11, Exercise 3.2 ====== Solutions of Question 11 of Exercise 3.2 of Unit 03: Vectors. This is unit of A ... KPTB or KPTBB) Peshawar, Pakistan. =====Question 11(i)===== Find the position vectors of the point of... i}+\dfrac{27}{7}\hat{j}\end{align} =====Question 11(ii)===== Find the position vectors of the point o
- Question 11, Exercise 3.3
- ====== Question 11, Exercise 3.3 ====== Solutions of Question 11 of Exercise 3.3 of Unit 03: Vectors. This is unit of A ... KPTB or KPTBB) Peshawar, Pakistan. =====Question 11 (i)===== Show that the vectors $3 \hat{i}-2 \hat{... form right angle with each other. =====Question 11 (ii)===== Show that $P(1,0,1), Q(1,1,1)$ and $R(1
- Question 3 & 4, Exercise 3.2
- limits_{+}q&=\mathop-\limits_{+}9 \\ \hline &11q&=11\\ \end{array} \] $$\implies q=1$$ \\ Put the val... === <text align="left"><btn type="primary">[[math-11-kpk:sol:unit03:ex3-2-p2 |< Question 2 ]]</btn></t... t> <text align="right"><btn type="success">[[math-11-kpk:sol:unit03:ex3-2-p4|Question 5 & 6 >]]</btn><
- Question 9 & 10, Exercise 3.2
- === <text align="left"><btn type="primary">[[math-11-kpk:sol:unit03:ex3-2-p6 |< Question 8 ]]</btn></t... t> <text align="right"><btn type="success">[[math-11-kpk:sol:unit03:ex3-2-p8|Question 11 >]]</btn></text>
- Question 12, 13 & 14, Exercise 3.2
- ===Solution==== {{ :fsc-part1-kpk:sol:unit03:math-11-kpk-3-2-q13.svg?nolink |Question 13}} By head to ... === <text align="left"><btn type="primary">[[math-11-kpk:sol:unit03:ex3-2-p8 |< Question 11 ]]</btn></text>
- Question 1, Exercise 3.3
- -2 \\ \Rightarrow \vec{a} \cdot(\vec{b}+\vec{c})&=11\end{align}. =====Question(iii)===== If $\vec{a}=... 5 \\ \Rightarrow(\vec{a}-\vec{b}) \cdot \vec{c}&=-11\end{align}. ====Go to ==== <text align="left"><btn type="success">[[math-11-kpk:sol:unit03:ex3-3-p2|Question 2 & 3 >]]</btn><
- Question 9 & 10, Exercise 3.3
- === <text align="left"><btn type="primary">[[math-11-kpk:sol:unit03:ex3-3-p5 |< Question 7 & 8]]</btn>... t> <text align="right"><btn type="success">[[math-11-kpk:sol:unit03:ex3-3-p7|Question 11 >]]</btn></text>
- Question 2, Exercise 3.2
- === <text align="left"><btn type="primary">[[math-11-kpk:sol:unit03:ex3-2-p1 |< Question 1]]</btn></te... t> <text align="right"><btn type="success">[[math-11-kpk:sol:unit03:ex3-2-p3|Question 3 >]]</btn></tex
- Question 5 & 6, Exercise 3.2
- verrightarrow{AB}|&=\sqrt{(10)^2+(4)^2}\\ &=\sqrt{116} = 2\sqrt{29}.\end{align} Let $\hat{r}$ be unit ... === <text align="left"><btn type="primary">[[math-11-kpk:sol:unit03:ex3-2-p3 |< Question 3 & 4 ]]</btn... t> <text align="right"><btn type="success">[[math-11-kpk:sol:unit03:ex3-2-p5|Question 7 >]]</btn></tex
- Question 7, Exercise 3.2
- === <text align="left"><btn type="primary">[[math-11-kpk:sol:unit03:ex3-2-p4 |< Question 5 & 6 ]]</btn... t> <text align="right"><btn type="success">[[math-11-kpk:sol:unit03:ex3-2-p6|Question 8 >]]</btn></tex
- Question 2 and 3 Exercise 3.3
- === <text align="left"><btn type="primary">[[math-11-kpk:sol:unit03:ex3-3-p1 |< Question 1]]</btn></te... t> <text align="right"><btn type="success">[[math-11-kpk:sol:unit03:ex3-3-p3|Question 4 & 5 >]]</btn><
- Question 4 and 5 Exercise 3.3
- === <text align="left"><btn type="primary">[[math-11-kpk:sol:unit03:ex3-3-p2 |< Question 2 & 3]]</btn>... t> <text align="right"><btn type="success">[[math-11-kpk:sol:unit03:ex3-3-p4|Question 6 >]]</btn></tex
- Question 6 Exercise 3.3
- === <text align="left"><btn type="primary">[[math-11-kpk:sol:unit03:ex3-3-p3 |< Question 4 & 5]]</btn>... t> <text align="right"><btn type="success">[[math-11-kpk:sol:unit03:ex3-3-p5|Question 7 & 8 >]]</btn><
- Question 7 & 8 Exercise 3.3
- === <text align="left"><btn type="primary">[[math-11-kpk:sol:unit03:ex3-3-p4 |< Question 6]]</btn></te... t> <text align="right"><btn type="success">[[math-11-kpk:sol:unit03:ex3-3-p6|Question 9 & 10 >]]</btn>