MathCity.org Beta

This is beta site.

  • Home
  • FSc
  • MSc
≪ View Page

Search

You can find the results of your search below.

Starts with
  • Exact match
  • Starts with
  • Ends with
  • Contains
@math-11-kpk:sol:unit01
  • Any namespace
Any time
  • Any time
  • Past week
  • Past month
  • Past year
Sort by hits
  • Sort by hits
  • Sort by last modified

Fulltext results:

Question 9 & 10, Exercise 1.1
7 Hits, Last modified: 5 months ago
ight)}\\ &=\dfrac{6+6+9i-4i}{2+2+4i-i}\\ &=\dfrac{12+5i}{4+3i}\end{align} Now \begin{align}\bar{z}&=\dfrac{12-5i}{4-3i}\\ &=\dfrac{12-5i}{4-3i}\times \dfrac{4+3i}{4+3i}\\ &=\dfrac{48+15+36i-20i}{16+9+12i-12i}\\ &=\dfrac{63+16i}{25}\\ &=\dfrac{63}{25}+\
Question 7, Exercise 1.2
6 Hits, Last modified: 5 months ago
1+3i} \quad \text{by rationalizing}\\ =&\dfrac{-3-12+4i-9i}{1+9}\\ =&\dfrac{-15-5i}{10}\\ =&\dfrac{-... 5i}{2+3i} \right)}^{2}}\\ =&\dfrac{16-25-40i}{4-9+12i}\\ =&\dfrac{-9-40i}{-5+12i}\\ =&\dfrac{-9-40i}{-5+12i}\times \dfrac{-5-12i}{-5-12i}\\ =&\dfrac{45-480+200i+108i}{25+144}\\ =&\d
Question 2 & 3, Exercise 1.1
4 Hits, Last modified: 5 months ago
===Question 2===== Prove that ${{i}^{107}}+{{i}^{112}}+{{i}^{122}}+{{i}^{153}}=0$. GOOD ====Solution==== \begin{align}L.H.S.&={{i}^{107}}+{{i}^{112}}+{{i}^{122}}+{{i}^{153}}\\ &=i\cdot i^{106}+i^{112}+i^{122}+i\cdot i^{152}\\ &=i.{{\left( {{i}^{2}}
Question 8, Exercise 1.1
2 Hits, Last modified: 5 months ago
7i}{4-7i}\\ &=\dfrac{\left( 64-14 \right)-\left( 112+8 \right)i}{16+49}\\ &=\dfrac{50-120i}{65}\\ &=\dfrac{10-24i}{13}\\ &=\dfrac{10}{13}-\dfrac{24i}{13}\... \times \dfrac{-5+4i}{-5+4i}\\ &=\dfrac{\left( -10-12 \right)+\left( 8-15 \right)i}{25+16}\\ &=\dfrac{-
Question 2, Exercise 1.2
2 Hits, Last modified: 5 months ago
3)&=(-1+i)\cdot (2-10i)\\ &=(-2+10)+(2+10)i\\ &=8+12i \ldots (3)\end{align} Now, we take \begin{align}... _3&=(-1+5i)\cdot (2-2i)\\ &=(-2+10)+(10+2)i\\ &=8+12i \ldots (4)\end{align} From (3) and (4), we get t
Question 2, Exercise 1.3
2 Hits, Last modified: 5 months ago
=-2$ \begin{align} P(-2)&=(-2)^3+6(-2)+20\\ &=-8-12+20\\ &=0\end{align} Thus $z+2$ is a factor of ${... =2$\\ \begin{align}P(-2)&=(-2)^3+6(-2)+20\\ &=-8-12+20=0\end{align} Thus $z-2$ is a factor of ${{z}^
Question 6, Exercise 1.3
2 Hits, Last modified: 5 months ago
dfrac{2\pm \sqrt{4-16}}{2}\\ &=\dfrac{2\pm \sqrt{-12}}{2}\\ &=\dfrac{2\pm 2\sqrt{3}i}{2}\\ &=1\pm \sqr... ght)}}{2\left( 1 \right)}\\ &=\dfrac{3\pm \sqrt{9-12}}{2}\\ &=\dfrac{3\pm \sqrt{-3}}{2}\\ &=\dfrac{3\p
Question 6, Exercise 1.1
1 Hits, Last modified: 5 months ago
{3+5i}\times \dfrac{3-5i}{3-5i}\\ &=\dfrac{\left( 12+5 \right)+\left( 3-20 \right)i}{9-25{{i}^{2}}}\\
Question 5, Exercise 1.3
1 Hits, Last modified: 5 months ago
ht)}}{2\left( 1 \right)}\\ &=\dfrac{-1\pm \sqrt{1-12}}{2}\\ &=\dfrac{-1\pm \sqrt{11}}{2}i\end{align} T