Search
You can find the results of your search below.
Fulltext results:
- Question 9 & 10, Exercise 1.1
- ight)}\\ &=\dfrac{6+6+9i-4i}{2+2+4i-i}\\ &=\dfrac{12+5i}{4+3i}\end{align} Now \begin{align}\bar{z}&=\dfrac{12-5i}{4-3i}\\ &=\dfrac{12-5i}{4-3i}\times \dfrac{4+3i}{4+3i}\\ &=\dfrac{48+15+36i-20i}{16+9+12i-12i}\\ ... t)}^{9}}+\dfrac{1}{i.{{\left( {{i}^{2}} \right)}^{12}}}\\ &={{\left( -1 \right)}^{9}}+\dfrac{1}{i.{{\l
- Question 2, Exercise 1.3
- =-2$ \begin{align} P(-2)&=(-2)^3+6(-2)+20\\ &=-8-12+20\\ &=0\end{align} Thus $z+2$ is a factor of ${... =2$\\ \begin{align}P(-2)&=(-2)^3+6(-2)+20\\ &=-8-12+20=0\end{align} Thus $z-2$ is a factor of ${{z}^
- Question 6, Exercise 1.3
- frac{2\pm \sqrt{4-16}}{2}\\ z&=\dfrac{2\pm \sqrt{-12}}{2}\\ z&=\dfrac{2\pm 2\sqrt{3}i}{2}\\ z&=1\pm \s... ht)}}{2\left( 1 \right)}\\ z&=\dfrac{3\pm \sqrt{6-12}}{2}\\ z&=\dfrac{3\pm \sqrt{-6}}{2}\\ z&=\dfrac{3
- Question 6, Exercise 1.1
- {3+5i}\times \dfrac{3-5i}{3-5i}\\ &=\dfrac{\left( 12+5 \right)+\left( 3-20 \right)i}{9-25{{i}^{2}}}\\
- Question 8, Exercise 1.1
- 7i}{4-7i}\\ &=\dfrac{\left( 64-14 \right)-\left( 112+8 \right)i}{16+49}\\ &=\dfrac{50-120i}{65}\\ &=\dfrac{10-24i}{13}\\ &=\dfrac{10}{13}-\dfrac{24i}{13}\... \times \dfrac{-5+4i}{-5+4i}\\ &=\dfrac{\left( -10-12 \right)+\left( 8-15 \right)i}{25+16}\\ &=\dfrac{-
- Question 7, Exercise 1.2
- 1+3i} \quad \text{by rationalizing}\\ =&\dfrac{-3-12+4i-9i}{1+9}\\ =&\dfrac{-15-5i}{10}\\ =&\dfrac{-
- Question 5, Exercise 1.3
- t)}}{2\left( 1 \right)}\\ z&=\dfrac{-1\pm \sqrt{1-12}}{2}\\ z&=\dfrac{-1\pm \sqrt{11}}{2}i\\ z&=-\dfra