====== Ch 01: Number Systems ====== * Simplify $(i)^{19}$ --- //BISE Gujrawala(2015)// * If $z$ be a complex number then prove that $\overline{z_1 + z_2}=\overline z_1 +\overline z_2$ --- // BISE Sargodha(2015)// * Simplify $\frac{2}{\sqrt{5}+\sqrt{-8}}$ in the form of $a+ib$ --- // BISE Sargodha(2015)// * Simplify by justify each step $\frac{\frac{1}{a}-\frac{1}{b}}{1-\frac{1}{a}\frac{1}{b}}$ --- // BISE Sargodha(2015)// * Find multiplicative inverse $(\sqrt{2}, -\sqrt{5})$ --- //BISE Sargodha(2015)// * Does the set $\{0,-1\}$ possess the closure property with respect to "+" and "-". --- // BISE Lahore(2017)// * Find multiplicative inverse of $a \div ib$ --- // BISE Lahore(2017)// * Simplify $(-1)^\frac{-21}{2}$ --- // BISE Sargodha(2016)// * Find multiplicative inverse of $(0,1)$ --- // BISE Sargodha(2016)// * Does the set $\{1,-1\}$ possess the closure property with respect to "+" and "-". --- // BISE Sargodha(2016)// * Prove that $|z_1z_2|=|z_1||z_2|$ --- // BISE Lahore(2017)// * Express $1+i\sqrt{3}$ in the polar form --- // FBISE (2016)// * Simplify by using De Moivre's Theorem $(-\frac{1}{2}+\frac{\sqrt{3}}{2}i)^3$ --- // FBISE (2017)// {{tag>FSc FSc_Part1 Important_Questions_FSc_1}}