====== Ch 02: Functions and Groups ====== The important questions of Chapter 2 of Textbook of Algebra and Trigonometry Class XI is published by Punjab Textbook Board (PTB) Lahore, Pakistan has been given on this page. These questions are selected from old papers. * Find multiplicative inverse $(2,4)$ --- // BISE Gujrawala(2015)// * Find power set of $\{a,\{b,c\}\}$ --- // BISE Gujrawala(2015)// * Prove that $A-B=A \cup B^c$ --- //BISE Gujrawala(2015)// * Write converse and contra positive of $p \longrightarrow q$ --- // BISE Gujrawala(2015)// * Write the inverse of $\{(1,2),(2,5),(3,7),(4,9),(5,11)\}$ --- // BISE Gujrawala(2015)// * What is the difference between $\{a,b \}$ and $\{\{a,b\}\}$ --- // BISE Gujrawala(2017)// * Show that $~(p \longrightarrow q) \longrightarrow p$ --- // BISE Gujrawala(2017)// * Prove that $A \cap(B \cup C)=(A \cap B)\cup(A \cap C)$ --- // BISE Gujrawala, BISE Lahore (2017)// * If $A=\{1,2,3,4\}$, $B=\{3,4,5,6,7,8\}$ and $C=\{5,6,7,9,10\}$ then verify associativity of union --- // BISE Sargodha(2015)// * If $A,B$ are elements of a group $G$ then show that $(ab)^{-1}=b^{-1}a^{-1}$ --- // BISE Sargodha(2015)// * For $A=\{1,2,3\}$ find the relation $\{(x,y)| x+y<5\}$ --- // BISE Sargodha(2015)// * Write the set $\{x|x \in Q \wedge x^2=2\}$ in descriptive and tabular form --- // BISE Sargodha(2015)// * If $a,b$ being elements of a group $G$ then solve (a) $ax=b$ (b) $x a=b$ --- // BISE Gujrawala(2015)// * Write converse and contrapositive of $q \longrightarrow p$ --- // BISE Sargodha(2015)// * Write down the power set of $\{a,b,c\}$ --- // BISE Sargodha(2015)// * Write down the power set of $\{9,11\}$ --- // BISE Sargodha(2016)// * Find converse, inverse of the conditional $~p \longrightarrow ~q$ --- // BISE Sargodha(2016)// * Solve the equation $a \divideontimes x=b$ where $a, b \in G$ and $G$ is a group --- // BISE Sargodha(2016)// * Write the converse and inverse of $~p \longrightarrow q$ --- // BISE Sargodha(2016)// * Convert the given theorem to logical form and prove by constructing truth table $A \cup (B \cap C)=(A \cup B)\cap (A \cup C)$ --- // BISE Sargodha(2017)// {{tag>FSc FSc_Part1 Important_Questions_FSc_1}}