====== Ch 03: Matrices and Determinants ====== * Fin $x$ and $y$ if $ \left[ {\begin{array}{c} x+3&1\\ -3& 3y-4 \end{array}} \right]= \left[ {\begin{array}{c} 2&1\\ -3&2 \end{array}} \right]$ --- // BISE Gujrawala(2015)// * Solve for matrix $A$ if $\left[ {\begin{array}{c}4&3\\ 2&2 \end{array}} \right]A-\left[ {\begin{array}{c} 2&3\\ -1&-2 \end{array}} \right]= \left[ {\begin{array}{c} -1&-4\\ 3&6 \end{array}} \right]$ --- // BISE Gujrawala(2015)// * Prove without expansion $ \left[ {\begin{array}{c} 6&7&8\\ 3&4&5\\ 2&3&4 \end{array}} \right]= 0$ --- // BISE Gujrawala(2015)// * Find inverse of $ \left[ {\begin{array}{c} 2&1&0\\ 1&1&0\\ 2&-3&5 \end{array}} \right] $ --- // BISE Gujrawala(2017)// * Evaluate the determinant $ \left[ {\begin{array}{c} 5&-2&5\\ 3&-1&4\\ -2&1&-2 \end{array}} \right] $ --- // BISE Gujrawala(2017)// * If $ A=\left[ {\begin{array}{c} 1&2\\ a& b \end{array}} \right]$ and $ A^2=\left[ {\begin{array}{c} 0&0\\ 0&0 \end{array}} \right]$ find the value of $a$ and $b$. --- // BISE Sargodha(2017), Gujrawala(2017)// * Find the value of $\lambda$ if $ A=\left[ {\begin{array}{c} 4&\lambda&3\\ 7&3&6\\2&3&1 \end{array}} \right]$ is singular --- // BISE Sargodha(2015)// * Find the value of $x$, $ \left[ {\begin{array}{c} 3&1&x\\ -1&3&4\\ x&1&0 \end{array}} \right]=0 $ --- // BISE Sargodha(2015)// * Evaluate $ \left[ {\begin{array}{c} a+l&a-l&a\\ a&a+l&a-l\\ a-l&a&a+l \end{array}} \right]$ --- // BISE Sargodha(2015)// * If $ A=\left[ {\begin{array}{c} l\\1+i\\i \end{array}} \right]$ find $A(\bar A)^t$ --- // BISE Sargodha(2016)// * Find inverse of $ \left[ {\begin{array}{c} 2i&i\\i&-i \end{array}} \right]$ --- // BISE Sargodha(2016)// * Use Cramer's rule to solve the system of equations: --- // BISE Sargodha(2016)// $$ {\begin{array}{c} 2x_1+x_2-x_3=-4\\x_1+x_2-2x_3=-4\\-x_1+2x_2-x_3=1 \end{array}}$$ * Use Cramer's rule to solve the system of equations --- // BISE Sargodha(2017)// $$ {\begin{array}{c} 2x_1-x_2+x_3=8\\x_1+2x_2+2x_3=6\\x_1-2x_2-x_3=1 \end{array}}$$ * If $ A=\left[ {\begin{array}{c} l&-1\\a&b \end{array}} \right]$ and $ A^2=\left[ {\begin{array}{c} l&0\\0&1 \end{array}} \right]$ find the value of $a$ and $b$ --- // BISE Sargodha(2017)// * Show that $ \left[ {\begin{array}{c} b&-1&a\\a&b&0\\1&a&b \end{array}} \right]=a^3+b^3$ --- // BISE Sargodha(2017)// * $ A=\left[ {\begin{array}{c} i&0\\i&-i \end{array}} \right]$, show that $A^4=I_2$ --- // BISE Lahore(2017)// * $ A=\left[ {\begin{array}{c} i&l+i\\l&-i \end{array}} \right]$ show that $A-(\bar A)$ is skew-hermitian. --- // BISE Lahore(2017)// * Without expansion show that $ \left[ {\begin{array}{c} ba&ca&ab\\ \frac{1}{a}&\frac{1}{b}&\frac{1}{c}\\a&b&c \end{array}} \right]=0$ --- // BISE Lahore(2017)// * Verify that $(AB)^t=B^t A^t$ if $ A=\left[ {\begin{array}{c} 1&-1&2\\0&3&1 \end{array}} \right]$, $ B=\left[ {\begin{array}{c} 1&1\\3&2\\0&-1 \end{array}} \right]$ --- // BISE Lahore(2017)// * Solve the following matrix equations for $A$.\\ $ \left[ {\begin{array}{c} 4&3\\2&2 \end{array}} \right]A- \left[ {\begin{array}{c} 2&3\\-1&-2 \end{array}} \right]= \left[ {\begin{array}{c} -1&4\\3&6 \end{array}} \right]$--- // FBISE (2016)// * Solve the equation $ \left[ {\begin{array}{c} x&0&1&1\\0&1&1&-1\\1&-2&3&4\\-2&x&1&-1 \end{array}} \right]=0$ --- // FBISE (2016)// * Use matrices to solve the following system --- // FBISE (2017)// $${\begin{array}{c} x+y=2\\2x-z=1\\2y-3z=-1\end{array}}$$ * Without expansion verify that $ \left[ {\begin{array}{c} -a&0&c\\0&a&-b\\b&-c&0 \end{array}} \right]=0$ {{tag>FSc FSc_Part1 Important_Questions_FSc_1}}