====== Ch 12: Applications of Trigonometry ====== * Find the value of $tan\frac{\alpha}{2}$ in term of $s$ --- //BISE Gujrawala(2015)// * Solve $\triangle ABC$ if $b=125$, $r=53^{\circ}$, $\alpha=47^{\circ}$ --- //BISE Gujrawala(2015)// * Show that $r_1=stan\frac{\alpha}{2}$ --- //BISE Gujrawala(2015)// * Define an escribed circle.--- //BISE Gujrawala(2015)// * With usual notation prove that $r_1+r_2+r_3-r=4R$ --- //BISE Gujrawala(2015)// * In $\triangle ABC$ $r=90^{\circ}$, $\alpha=62^{\circ}40'$, $b=796$, find $\beta$ anf $a$--- //BISE Gujrawala(2017)// * Find the area of $\triangle ABC$, if $a=18$, $b=24$,$c=30$ --- //BISE Gujrawala(2017)// * Prove that $\frac{1}{r^2}+\frac{1}{{r_1}^2}+\frac{1}{{r_2}^2}+\frac{1}{{r_3}^2}=\frac{a^2+b^2+c^2}{\triangle^2}$ --- //BISE Gujrawala(2017)// * Show that $r_2=s tan\frac{\beta}{2}$--- //BISE Sargodha(2015)// * Show that $r=(s-a)tan\frac{\alpha}{2}$--- //BISE Sargodha(2015)// * The sides of a triangle are $x^2+x+1$,$2x+1$ and $x^2-1$. Prove that the greatest angle of the triangle is $120^{\circ}$ --- //BISE Sargodha(2015), FBISE(2017)// * Solve the triangle $ABC$, if $\beta=60^{\circ}$, $\gamma=15^{\circ}$, $b=\sqrt{6}$--- //BISE Sargodha(2015)// * Find the area of the triangle $ABC$, when $a=18$, $b=24$, $c=30$ --- //BISE Sargodha(2015)// * Prove that $r_1r_2r_3=rs^2$--- //BISE Sargodha(2015)// * Prove that $abc(sin\alpha+sin\beta+sin\gamma)=4\triangle s$--- //BISE Sargodha(2015)// * With usual notation prove that $cos\frac{\alpha}{2}=\sqrt{\frac{s(s-a)}{bc}}$--- //BISE Sargodha(2016)// * With usual notation prove that $r=\frac{\triangle}{s}$--- //BISE Sargodha(2016)// * Prove that in an equilateral triangle $r:R:r_1:r_2:r_3=1:2:3:3:3$--- //BISE Sargodha(2016)// * At the top of a cliff $80$m high the angle of depression of a boat is $12^{\circ}$. How far is the boat from the cliff? --- //BISE Lahore(2017)// * Solve the $\triangle ABC$ in which $\alpha=3$, $c=6$ and $\beta=36^{\circ}20'$--- //BISE Lahore(2017)// * Find the smallest angle of the $\triangle ABC$ in which $\alpha=37.34$, $b=3.24$ and $c=35.06$--- //BISE Lahore(2017)// * Prove that with usual notation, $R=\frac{abc}{4\triangle}$ --- // FBISE(2016)// * Show that $r_1=4rsin\frac{\alpha}{2}cos\frac{\beta}{2}cos\frac{\gamma}{2}$ --- //FBISE(2017)// * Prove that $\frac{1}{r}=\frac{1}{r_1}+\frac{1}{r_2}+\frac{1}{r_3}$--- //FBISE(2016)// * Prove that in an equilateral triangle $r:R:r_1=1:2:3$ --- //FBISE(2017)// {{tag>FSc FSc_Part1 Important_Questions_FSc_1}}