====== MCQs: Ch 01 Number Systems ====== High quality MCQs of Chapter 01 Number System of Text Book of Algebra and Trigonometry Class XI (Mathematics FSc Part 1 or HSSC-I), Punjab Text Book Board, Lahore. The answers are given at the end of the page. ====MCQs==== - If $*$ is a binary operation in a set $A$, then for all $a, b \in A$ - $a+b \in A$ - $a-b \in A$ - $a \times b \in A$ - $a * b \in A$ - If $z=(1,3)$ then $z^{-1}= $ - $(\displaystyle{\frac{1}{10}},\displaystyle{\frac{3}{10}})$ - $(-\displaystyle{\frac{1}{10}},\displaystyle{\frac{3}{10}})$ - $(\displaystyle{\frac{1}{10}},-\displaystyle{\frac{3}{10}})$ - $(-\displaystyle{\frac{1}{10}},-\displaystyle{\frac{3}{10}})$ - $\displaystyle{\frac{3}{2+2i}}=$ - $1-i$ - $1+i$ - $-2i$ - $\displaystyle{\frac{3-3i}{4}}$ - $\overline{z_1+z_2}=$ - $\overline{z_1}+\overline{z_2}$ - $\overline{z_1}-\overline{z_2}$ - $\overline{z_1}+z_2$ - $z_1+\overline{z_2}$ - $|z_1+z_2|$ - $>|z_1|+|z_2|$ - $\leq|z_1|+|z_2|$ - $\leq z_1+z_2$ - $>z_1+z_2$ - If $z_1=2+i$, $z_2=1+3i$, then $z_1-z_2=$ - $1-7i$ - $-1+7i$ - $1-2i$ - $3+4i$ - If $z_1=2+i$, $z_2=1+3i$, then $-i lm (z_1-z_2)=$ - $2i$ - $-2i$ - $2$ - $3$ - Which of the following sets has closure property with respect to multiplication? - $\{-1,1\}$ - $\{-1\}$ - $\{-1,0\}$ - $\{0,2\}$ - The multiplicative inverse of $2$ is - $0$ - $1$ - $-2$ - $\displaystyle{\frac{1}{2}}$ - $\displaystyle{\frac{4}{2-2i}}=$ - $1-i$ - $1+i$ - $-2i$ - $i$ - The simplified form of $i^{101}$ is - $-1$ - $1$ - $i$ - $-i$ - $\overline{\overline{z}}=$ is - $\overline{z}$ - $-\overline{z}$ - $z$ - $-z$ - If $z_1=2+i$, $z_2=1+3i$, then $i \Re (z_1-z_2)=$ - $1$ - $i$ - $-2i$ - $2$ - $\sqrt{2}$ is ------- number. - natural - complex - irrational - $\displaystyle{\frac{p}{q}}$ form - A rational number is a number which can be expressed in the form ------- - $\displaystyle{\frac{p}{q}}$ where $p,q \in z \wedge q \neq 0$ - $\displaystyle{\frac{q}{p}}$ where $p,q \in z \wedge q \neq 0$ - $\displaystyle{\frac{p}{q}}$ where $p,q \in Z \wedge q = 0$ - $\displaystyle{\frac{q}{p}}$ where $p,q \in N \wedge q \neq 0$ - $\mathbb{R}=$ - $\mathbb{Q} \cup \mathbb{N}'$ - $\mathbb{Q}$ - $\mathbb{Q} \cup \mathbb{Q}'$ - $\mathbb{Q}$ - $\{1,2,3,...\}$ - set of irrational number - set of real number - set of rational number - set of natural number - The set of integers is ----- - $\{\pm1,\pm2,\pm3,...\}$ - $\{0,\pm1,\pm2,\pm3,...\}$ - $\{+1,+2,+3,...\}$ - $\{-1,+1,-2,+2\}$ - $0.333...=(\approx \displaystyle{\frac{1}{3}})$ is a -------- decimal. - Terminating - non-recurring - recurring - non-terminating and recurring - $2.\overline{3}(=2.333...)$ is a ----- number. - irrational - complex - real - rational - For all $a, b, c \in \mathbb{R}$\\ (i) $a>b \wedge b>c \Rightarrow a>c$\\ (ii) $ab \Rightarrow a+c>b+c$\\ (ii) $a