====== Solution and Area of Oblique Triangle ====== These are the common formulas used in Chapter 12 of Textbook of Algebra and Trigonometry Class XI, Punjab Textbook Board Lahore. This handout is very helpful to remember the formulas. All these formulas are given for real valued and defined trigonometric functions. A PDF file can be downloaded for high quality printing and a word file is also given if you wish to modify the contents or credit as you need. * $a^2=b^2+c^2-2bc\cos \alpha$ * $b^2=c^2+a^2-2ca\cos \beta$ * $c^2=a^2+b^2-2ab\cos \gamma$ * $\cos\alpha =\dfrac{b^2+c^2-a^2}{2bc}$ * $\cos\beta =\dfrac{c^2+a^2-b^2}{2ac}$ * $\cos\gamma =\dfrac{a^2+b^2-c^2}{2ab}$ * $\dfrac{a}{\sin \alpha }=\dfrac{b}{\sin \beta }=\dfrac{c}{\sin \gamma }$ * $\dfrac{a-b}{a+b}=\dfrac{\tan \left( \tfrac{\alpha -\beta }{2} \right)}{\tan \left( \tfrac{\alpha +\beta }{2} \right)}$ * $\dfrac{b-c}{b+c}=\dfrac{\tan \left( \tfrac{\beta-\gamma}{2} \right)}{\tan \left( \tfrac{\beta+\gamma}{2} \right)}$ * $\dfrac{c-a}{c+a}=\dfrac{\tan \left( \tfrac{\gamma -\alpha}{2} \right)}{\tan \left( \tfrac{\gamma +\alpha}{2} \right)}$ * $\sin\dfrac{\alpha}{2}=\sqrt{\dfrac{\left(s-b \right)\left(s-c \right)}{bc}}$ * $\sin\dfrac{\beta}{2}=\sqrt{\dfrac{\left(s-c \right)\left(s-a \right)}{ca}}$ * $\sin\dfrac{\gamma}{2}=\sqrt{\dfrac{\left(s-a \right)\left(s-b \right)}{ab}}$ * $\cos\dfrac{\alpha}{2}=\sqrt{\dfrac{s\left(s-a \right)}{bc}}$ * $\cos\dfrac{\beta}{2}=\sqrt{\dfrac{s\left(s-b \right)}{ca}}$ * $\cos\dfrac{\gamma}{2}=\sqrt{\dfrac{s\left(s-c \right)}{ab}}$ * $\tan\dfrac{\alpha}{2}=\sqrt{\dfrac{(s-b)(s-c)}{s(s-a)}}$ * $\tan\dfrac{\beta}{2}=\sqrt{\dfrac{(s-c)(s-a)}{s(s-b)}}$ * $\tan\dfrac{\gamma}{2}=\sqrt{\dfrac{(s-a)(s-b)}{s(s-c)}}$, where $s=\dfrac{a+b+c}{2}$. Assume $\Delta$ to be area of triangle. * $\Delta=\dfrac{1}{2}bc\sin\alpha =\dfrac{1}{2}ca\sin \beta =\frac{1}{2}ab\sin \gamma $ * $\Delta=\dfrac{a^2\sin\beta\sin\gamma }{2\sin\alpha }=\dfrac{b^2\sin\gamma\sin\alpha}{2\sin\beta}=\dfrac{c^2\sin\alpha\sin \beta}{2\sin\gamma }$ * $\Delta=\sqrt{s( s-a)(s-b)(s-c)}$, (Heron’s Formula), where $s=\dfrac{a+b+c}{2}$. Assume $R$ to be circumradius: * $R=\dfrac{a}{2\sin\alpha }=\dfrac{b}{2\sin\beta }=\dfrac{c}{2\sin \gamma }$ * $R=\dfrac{abc}{4\Delta}$ Assume $r$ to be inradius * $r=\dfrac{\Delta}{s}$ * $r_1=\dfrac{\Delta }{s-a}$ * $r_2=\dfrac{\Delta }{s-b}$ * $r_3=\dfrac{\Delta }{s-c}$ ==== Download or View online ==== * **{{ :fsc-part1-ptb:fsc-i-solution-and-area-of-oblique-triangle-v3.pdf |Download PDF}}** * **{{ :fsc-part1-ptb:fsc-i-solution-and-area-of-oblique-triangle-v3.docx |Download Word file}}** * View Online {{gview noreference>:fsc-part1-ptb:fsc-i-solution-and-area-of-oblique-triangle-v3.pdf}} {{tag>FSc FSc_Part1 Formulas}}