====== Question 9, Exercise 1.2 ====== Solutions of Question 9 of Exercise 1.2 of Unit 01: Complex Numbers. This is unit of A Textbook of Mathematics for Grade XI is published by Khyber Pakhtunkhwa Textbook Board (KPTB or KPTBB) Peshawar, Pakistan. =====Question 9(i)===== If $z=3+2i,$ then verify that $-|z|\leq \operatorname{Re}\left( z \right)\leq |z|$ ====Solution==== Given $z=3+2i$. Then $|z|=\sqrt{9+4}=\sqrt{13}$ and ${\rm Re}z=3=\sqrt{9}$.\\ As \begin{align} &-\sqrt{13} \leq \sqrt{9} \leq \sqrt{13}\\ \implies &-|z|\leq \operatorname{Re}\left( z \right)\leq |z|\end{align} =====Question 9(ii)===== If $z=3+2i,$ then verify that $-|z|\leq \operatorname{Im}\left( z \right)\leq |z|$ ====Solution==== Given $z=3+2i$. Then $|z|=\sqrt{9+4}=\sqrt{13}$ and ${\rm Im}z=2=\sqrt{4}$.\\ As \begin{align} &-\sqrt{13} \leq \sqrt{4} \leq \sqrt{13}\\ \implies &-|z|\leq {\rm Im}(z) \leq |z| \end{align} ==== Go To ==== [[math-11-kpk:sol:unit01:ex1-2-p7|< Question 8]]