====== Question 4 & 5, Review Exercise 1 ======
Solutions of Question 4 & 5 of Review Exercise 1 of Unit 01: Complex Numbers. This is unit of A Textbook of Mathematics for Grade XI is published by Khyber Pakhtunkhwa Textbook Board (KPTB or KPTBB) Peshawar, Pakistan.
=====Question 4=====
If ${{z}_{1}}=2-i$, ${{z}_{2}}=1+i,$ find $\left|\dfrac{{{z}_{1}}+{{z}_{2}}+1}{{{z}_{1}}-{{z}_{2}}+1}\right|$.
====Solution====
Given $z_1=2-i$ and $z_2=1+i$, so we have
\begin{align}
\dfrac{{{z}_{1}}+{{z}_{2}}+1}{{{z}_{1}}-{{z}_{2}}+1}&=\dfrac{\left( 2-i \right)+\left( 1+i \right)+1}{\left( 2-i \right)-\left( 1+i \right)+1}\\
&=\dfrac{2-i+1+i+1}{2-i-1-i+1}\\
&=\dfrac{4}{2-2i}\\
&=\dfrac{2}{1-i}\\
&=\dfrac{2}{1-i}\times \dfrac{1+i}{1+i}\\
&=\dfrac{2\left( 1+i \right)}{1+1}\\
&=\dfrac{2\left( 1+i \right)}{2}\\
&=1+i.\end{align}
Now
\begin{align}\left|\dfrac{{{z}_{1}}+{{z}_{2}}+1}{{{z}_{1}}-{{z}_{2}}+1}\right|&=\sqrt{{{1}^{2}}+{{1}^{2}}}\\
&=\sqrt{2}\end{align}
=====Question 5=====
Find the modulus of $\dfrac{1+i}{1-i}-\dfrac{1-i}{1+i}$.\\
====Solution====
\begin{align}\dfrac{1+i}{1-i}-\dfrac{1-i}{1+i}&=\dfrac{{{\left( 1+i \right)}^{2}}-{{\left( 1-i \right)}^{2}}}{1+1}\\
&=\dfrac{\left( 1+2i-1 \right)-\left( 1-2i-1 \right)}{2}\\
&=\dfrac{2i+2i}{2}\\
&=2i\end{align}
Now
\begin{align}\left|\dfrac{1+i}{1-i}-\dfrac{1-i}{1+i}\right|&=\sqrt{{{2}^{2}}}\\
&=\sqrt{4} = 2.
\end{align}
====Go To====
[[math-11-kpk:sol:unit01:Review-ex-1-p2 |< Question 2 & 3]]
[[math-11-kpk:sol:unit01:Review-ex-1-p4|Question 6 & 7 >]]