====== Question 11, Exercise 2.1 ======
Solutions of Question 11 of Exercise 2.1 of Unit 02: Matrices and Determinants. This is unit of A Textbook of Mathematics for Grade XI is published by Khyber Pakhtunkhwa Textbook Board (KPTB or KPTBB) Peshawar, Pakistan.
=====Question 11=====
Let $A=\begin{bmatrix}0 & 1 & -2 \\-1 & 0 & 3 \\2 & -3 & 0 \end{bmatrix}$ and $B=\begin{bmatrix}0 & -6 & 11 \\6 & 0 & -7 \\-11 & 7 & 0 \end{bmatrix}$. Verify $A+B$ is skew symmetric.
====Solution====
$$A=\left[ \begin{matrix}
0 & 1 & -2 \\
-1 & 0 & 3 \\
2 & -3 & 0 \\
\end{matrix} \right]$$
$$B=\left[ \begin{matrix}
0 & -6 & 11 \\
6 & 0 & -7 \\
-11 & 7 & 0 \\
\end{matrix} \right]$$
For skew symmetric, we have
$$( A+B )^t=-( A+B )$$
$$A+B=\left[ \begin{matrix}
0 & 1 & -2 \\
-1 & 0 & 3 \\
2 & -3 & 0 \\
\end{matrix} \right]+\left[ \begin{matrix}
0 & -6 & 11 \\
6 & 0 & -7 \\
-11 & 7 & 0 \\
\end{matrix} \right]$$
$$A+B=\left[ \begin{matrix}
0+0 & 1-6 & -2+11 \\
-1+6 & 0+0 & 3-7 \\
2-11 & -3+7 & 0+0 \\
\end{matrix} \right]$$
$$A+B=\left[ \begin{matrix}
0 & -5 & 9 \\
5 & 0 & -4 \\
-9 & 4 & 0 \\
\end{matrix} \right]$$
$$( A+B )^t=\left[ \begin{matrix}
0 & 5 & -9 \\
-5 & 0 & 4 \\
9 & -4 & 0 \\
\end{matrix} \right]$$
$$( A+B )^t=-\left[ \begin{matrix}
0 & -5 & 9 \\
5 & 0 & -4 \\
-9 & 4 & 0 \\
\end{matrix} \right]$$
$$( A+B )^t=-( A+B )$$
====Go To====
[[math-11-kpk:sol:unit02:ex2-1-p9 |< Question 10]]
[[math-11-kpk:sol:unit02:ex2-1-p11|Question 12 >]]