====== Question 12, Exercise 2.1 ======
Solutions of Question 12 of Exercise 2.1 of Unit 02: Matrices and Determinants. This is unit of A Textbook of Mathematics for Grade XI is published by Khyber Pakhtunkhwa Textbook Board (KPTB or KPTBB) Peshawar, Pakistan.
=====Question 12(i)=====
Let $A=\begin{bmatrix}3 & 2 & 1 \\4 & 5 & 6 \\-2 & 3 & 4\end{bmatrix}$. Verify that$A+A^t$ is symmetric.
====Solution====
$$A=\left[ \begin{matrix}
3 & 2 & 1 \\
4 & 5 & 6 \\
-2 & 3 & 4 \\
\end{matrix} \right]$$
$$A^t=\left[ \begin{matrix}
3 & 4 & -2 \\
2 & 5 & 3 \\
1 & 6 & 4 \\
\end{matrix} \right]$$
For symmetric, we have,
$$( A+A^t )^t=A+A^t$$
$$A+A^t=\left[ \begin{matrix}
3 & 2 & 1 \\
4 & 5 & 6 \\
-2 & 3 & 4 \\
\end{matrix} \right]+\left[ \begin{matrix}
3 & 4 & -2 \\
2 & 5 & 3 \\
1 & 6 & 4 \\
\end{matrix} \right]$$
$$=\left[ \begin{matrix}
3+3 & 2+4 & 1-2 \\
4+2 & 5+5 & 6+3 \\
-2+1 & 3+6 & 4+4 \\
\end{matrix} \right]$$
$$A+A^t=\left[ \begin{matrix}
6 & 6 & -1 \\
6 & 10 & 9 \\
-1 & 9 & 8 \\
\end{matrix} \right]$$
$$( A+A^t )^t=\left[ \begin{matrix}
6 & 6 & -1 \\
6 & 10 & 9 \\
-1 & 9 & 8 \\
\end{matrix} \right]$$
$$( A+A^t )^t=( A+A^t )$$
=====Question 12(ii)=====
Let $A=\begin{bmatrix}3 & 2 & 1 \\ 4 & 5 & 6 \\-2 & 3 & 4\end{bmatrix}$. Verify that$A-A^t$ is skew symmetric.
====Solution====
$$A=\left[ \begin{matrix}
3 & 2 & 1 \\
4 & 5 & 6 \\
-2 & 3 & 4 \\
\end{matrix} \right]$$
$$A^t=\left[ \begin{matrix}
3 & 4 & -2 \\
2 & 5 & 3 \\
1 & 6 & 4 \\
\end{matrix} \right]$$
For skew-symmetric, we have,
$$( A-A^t )^t=-( A-A^t)$$
$$A-A^t=\left[ \begin{matrix}
3 & 2 & 1 \\
4 & 5 & 6 \\
-2 & 3 & 4 \\
\end{matrix} \right]-\left[ \begin{matrix}
3 & 4 & -2 \\
2 & 5 & 3 \\
1 & 6 & 4 \\
\end{matrix} \right]$$
$$=\left[ \begin{matrix}
3-3 & 2-4 & 1+2 \\
4-2 & 5-5 & 6-3 \\
-2-1 & 3-6 & 4-4 \\
\end{matrix} \right]$$
$$A-A^t=\left[ \begin{matrix}
0 & -2 & 3 \\
2 & 0 & 3 \\
-3 & -3 & 0 \\
\end{matrix} \right]$$
$$( A-A^t )^t=\left[ \begin{matrix}
0 & 2 & -3 \\
-2 & 0 & -3 \\
3 & 3 & 0 \\
\end{matrix} \right]$$
$$( A-A^t )^t=-\left[ \begin{matrix}
0 & -2 & 3 \\
2 & 0 & 3 \\
-3 & -3 & 0 \\
\end{matrix} \right]$$
$$( A-A^t )^t=-( A-A^t)$$
====Go To====
[[math-11-kpk:sol:unit02:ex2-1-p10 |< Question 11]]
[[math-11-kpk:sol:unit02:ex2-1-p12|Question 13 >]]