====== Question 5 & 6, Exercise 2.1 ======
Solutions of Question 5 & 6 of Exercise 2.1 of Unit 02: Matrices and Determinants. This is unit of A Textbook of Mathematics for Grade XI is published by Khyber Pakhtunkhwa Textbook Board (KPTB or KPTBB) Peshawar, Pakistan.
=====Question 5=====
Matrix $A= \begin{bmatrix} 0 & 2b & -2 \\ 3 & 1 & 3 \\ 3a & 3 & -1 \end{bmatrix}$ is given to be symmetric. Find the value of $a$ and $b$.
====Solution====
Given: $A=\begin{bmatrix} 0 & 2b & -2 \\ 3 & 1 & 3 \\ 3a & 3 & -1 \end{bmatrix}$
Then
$$A^t=\left[ \begin{matrix}
0 & 3 & 3a \\
2b & 1 & 3 \\
-2 & 3 & -1 \\
\end{matrix} \right]$$
Since $A$ is given to be symmetirc, $A^t=A$, implies
$$\left[ \begin{matrix}
0 & 3 & 3a \\
2b & 1 & 3 \\
-2 & 3 & -1 \\
\end{matrix} \right]=\left[ \begin{matrix}
0 & 2b & -2 \\
3 & 1 & 3 \\
3a & 3 & -1 \\
\end{matrix} \right]$$
This gives
$$ 3a=-2 \text{ and } 2b=3,$$
$$\implies a=-\dfrac{2}{3} \text{ and } b=\dfrac{3}{2}.$$
=====Question 6(i)=====
Solve the matrix equations for $X.$ Find $X-3A=2B$, if $A=\begin{bmatrix} 1 & 0 & 3 \\-2 & 2 & 1 \end{bmatrix}$
and $B=\begin{bmatrix}2 & 1 & 1 \\ 3 & -1 & 4 \end{bmatrix}$.
====Solution====
Given $A=\left[ \begin{matrix} 1 & 0 & 3 \\ -2 & 2 & 1 \\ \end{matrix} \right]$ and
$B=\left[ \begin{matrix} 2 & 1 & \quad 1 \\ 3 & -1 & 4 \\ \end{matrix} \right].$
As
$$X-3A=2B$$
This gives
$$X=3A+2B.$$
Now
$$ 3A=\left[ \begin{matrix}3 & 0 & 9 \\-6 & 6 & 3 \\
\end{matrix} \right]$$
and
$$2B=\left[ \begin{matrix}4 & 2 & \quad 2 \\6 & -2 & 8 \\
\end{matrix} \right].$$
Thus
\begin{align}X&=\left[ \begin{matrix}3 & 0 & 9 \\6 & 6 & 3 \\
\end{matrix} \right]+\left[ \begin{matrix}4 & 2 & 2 \\ 6 & -2 & 8 \\
\end{matrix} \right] \\
&=\left[ \begin{matrix}3+4 & 0+2 & 9+2 \\-6+6 & 6-2 & 3+8 \\
\end{matrix} \right]\\
&=\left[ \begin{matrix}7 & 2 & 11 \\0 & 4 & 11 \\
\end{matrix} \right]\end{align}
=====Question 6(ii)=====
Solve the matrix equations for $X.$ Find $2( X-A )=B$, if $A=\begin{bmatrix}1 & 2 & 2 \\ 3 & -1 & 2 \end{bmatrix}$ and $B=\begin{bmatrix} 4 & 6 & 2 \\ 0 & -4 & 2 \end{bmatrix}$.
====Solution====
Given $A=\left[ \begin{matrix}1 & 2 & 2 \\3 & -1 & 2 \\\end{matrix} \right]$ and $B=\left[ \begin{matrix}4 & 6 & \quad 2 \\0 & -4 & 2 \\
\end{matrix} \right]$.
As $$2( X-A )=B.$$
This gives
$$X-A=\dfrac{B}{2}.$$
Now
$$\dfrac{B}{2}=\left[ \begin{matrix}2 & 3 & \quad 1 \\0 & -2 & 1 \\
\end{matrix} \right]$$
So
\begin{align}X&=\left[\begin{matrix}1 & 2 & 2 \\3 & -1 & 2 \\
\end{matrix} \right]+\left[ \begin{matrix}2 & 3 & \quad 1 \\0 & -2 & 1 \\\end{matrix} \right]\\
&=\left[ \begin{matrix}1+2 & 2+3 & 2+1 \\3+0 & -1-2 & 2+1 \\
\end{matrix} \right]\\
&=\left[ \begin{matrix}3 & \quad 5 & 3 \\3 & -3 & 3 \\
\end{matrix} \right].\end{align}
====Go To====
[[math-11-kpk:sol:unit02:ex2-1-p4 |< Question 4]]
[[math-11-kpk:sol:unit02:ex2-1-p6|Question 7 >]]