====== Question 8, Exercise 2.1 ======
Solutions of Question 8 of Exercise 2.1 of Unit 02: Matrices and Determinants. This is unit of A Textbook of Mathematics for Grade XI is published by Khyber Pakhtunkhwa Textbook Board (KPTB or KPTBB) Peshawar, Pakistan.
=====Question 8(i)=====
If $A=\begin{bmatrix}1 & 2 & 0 \\3 & -1 & 4 \end{bmatrix}$, show that $( A^t )^t=A$.
====Solution====
Given
$$A=\left[ \begin{matrix}
1 & 2 & 0 \\
3 & -1 & 4 \\
\end{matrix} \right]$$
Then
$$A^t=\left[ \begin{matrix}
1 & 3 \\
2 & -1 \\
0 & 4 \\
\end{matrix} \right]$$
This gives
\begin{align}( A^t )^t&=\left[ \begin{matrix}1 & 2 & 0 \\3 & -1 & 4 \\
\end{matrix} \right]\\
\implies( A^t)^t&=A. \end{align}
=====Question 8(ii)=====
If $A=\begin{bmatrix}1 & 2 & 0\\3 & -1 & 4\end{bmatrix}$, show that $AA^t\ne A^tA$.
====Solution====
$$A=\left[ \begin{matrix}
1 & 2 & 0 \\
3 & -1 & 4 \\
\end{matrix} \right]$$
$$A^t=\left[ \begin{matrix}
1 & 3 \\
2 & -1 \\
0 & 4 \\
\end{matrix} \right]$$
$$AA^t=\left[ \begin{matrix}
1 & 2 & 0 \\
3 & -1 & 4 \\
\end{matrix} \right]\left[ \begin{matrix}
1 & 3 \\
2 & -1 \\
0 & 4 \\
\end{matrix} \right]$$
$$AA^t=\left[ \begin{matrix}
1+4+0 & 3-2+0 \\
3-2+0 & 9+1+16 \\
\end{matrix} \right]$$
$$AA^t=\left[ \begin{matrix}
5 & 1 \\
1 & 26 \\
\end{matrix} \right]$$
$$A^tA=\left[ \begin{matrix}
1 & 3 \\
2 & -1 \\
0 & 4 \\
\end{matrix} \right]\left[ \begin{matrix}
1 & 2 & 0 \\
3 & -1 & 4 \\
\end{matrix} \right]$$
$$A^tA=\left[ \begin{matrix}
1+9 & 2-3 & 0+12 \\
2-3 & 4+1 & 0-8 \\
0+12 & 0-4 & 0+16 \\
\end{matrix} \right]$$
$$A^tA=\left[ \begin{matrix}
10 & -1 & 12 \\
-1 & 5 & -8 \\
12 & -4 & 16 \\
\end{matrix} \right]$$
$$AA^t\ne A^tA$$
====Go To====
[[math-11-kpk:sol:unit02:ex2-1-p6 |< Question 7]]
[[math-11-kpk:sol:unit02:ex2-1-p8|Question 9 >]]