====== Question 9, Exercise 2.1 ======
Solutions of Question 9 of Exercise 2.1 of Unit 02: Matrices and Determinants. This is unit of A Textbook of Mathematics for Grade XI is published by Khyber Pakhtunkhwa Textbook Board (KPTB or KPTBB) Peshawar, Pakistan.
=====Question 9(i)=====
If $A=\begin{bmatrix}2 & -1 & 3 \\1 & \quad 0 & 1 \end{bmatrix},$
$B=\begin{bmatrix}1 & 2 \\2 & 2 \\ 3 & 0 \end{bmatrix}$, show that $( AB )^t=B^tA^t$.
====Solution====
$$A=\left[ \begin{matrix}
2 & -1 & 3 \\
1 & \quad 0 & 1 \\
\end{matrix} \right],$$
$$B=\left[ \begin{matrix}
1 & 2 \\
2 & 2 \\
3 & 0 \\
\end{matrix} \right]$$
$$A^t=\left[ \begin{matrix}
\quad2 & 1 \\
-1 & 0 \\
\quad 3 & 1 \\
\end{matrix} \right]$$
$$B^t=\left[ \begin{matrix}
1 & 2 & 3 \\
2 & 2 & 0 \\
\end{matrix} \right]$$
$$AB=\left[ \begin{matrix}
2 & -1 & 3 \\
1 & \quad 0 & 1 \\
\end{matrix} \right]\left[ \begin{matrix}
1 & 2 \\
2 & 2 \\
3 & 0 \\
\end{matrix} \right]$$
$$AB=\left[ \begin{matrix}
2-2+9 & 4-2+0 \\
1+0+3 & 2+0+0 \\
\end{matrix} \right]$$
$$AB=\left[ \begin{matrix}
9 & 2 \\
4 & 2 \\
\end{matrix} \right]$$
$$( AB )^t=\left[ \begin{matrix}
9 & 4 \\
2 & 2 \\
\end{matrix} \right]$$
$$B^tA^t=\left[ \begin{matrix}
1 & 2 & 3 \\
2 & 2 & 0 \\
\end{matrix} \right]\left[ \begin{matrix}
\,\,\,2 & 1 \\
-1 & 0 \\
\quad 3 & 1 \\
\end{matrix} \right]$$
$$B^tA^t=\left[ \begin{matrix}
2-2+9 & 1+0+3 \\
4-2+0 & 2+0+0 \\
\end{matrix} \right]$$
$$B^tA^t=\left[ \begin{matrix}
9 & 4 \\
2 & 2 \\
\end{matrix} \right]$$
$$( AB)^t=B^tA^t$$
=====Question 9(ii)=====
If $A= \begin{bmatrix}\quad 1 & 2 & 0 \\-1 & 1 & 4 \end{bmatrix}$, $B=\begin{bmatrix}1 & 1 \\2 & 3 \\1 & -2 \end{bmatrix}$, show that $( AB)^t=B^tA^t$.
====Solution====
$$A=\left[ \begin{matrix}
\quad 1 & 2 & 0 \\
-1 & 1 & 4 \\
\end{matrix} \right]$$
$$B=\left[ \begin{matrix}
1 & 1 \\
2 & 3 \\
1 & -2 \\
\end{matrix} \right]$$
$${{A}^{t}}=\left[ \begin{matrix}
1 & -1 \\
2 & \quad 1 \\
0 & \quad 4 \\
\end{matrix} \right]$$
$${{B}^{t}}=\left[ \begin{matrix}
1 & 2 & \quad 1 \\
1 & 3 & -2 \\
\end{matrix} \right]$$
$$AB=\left[ \begin{matrix}
\quad 1 & 2 & 0 \\
-1 & 1 & 4 \\
\end{matrix} \right]\left[ \begin{matrix}
1 & 1 \\
2 & 3 \\
1 & -2 \\
\end{matrix} \right]$$
$$AB=\left[ \begin{matrix}
1+4+0 & 1+6+0 \\
-1+2+4 & -1+3-8 \\
\end{matrix} \right]$$
$$AB=\left[ \begin{matrix}
5 & 7 \\
5 & -6 \\
\end{matrix} \right]$$
$${{\left( AB \right)}^{t}}=\left[ \begin{matrix}
5 & 5 \\
7 & -6 \\
\end{matrix} \right]$$
$${{B}^{t}}{{A}^{t}}=\left[ \begin{matrix}
1 & 2 & \quad 1 \\
1 & 3 & -2 \\
\end{matrix} \right]\left[ \begin{matrix}
1 & -1 \\
2 & \quad 1 \\
0 & \quad 4 \\
\end{matrix} \right]$$
$${{B}^{t}}{{A}^{t}}=\left[ \begin{matrix}
1+4+0 & -1+2+4 \\
1+6+0 & -1+3-8 \\
\end{matrix} \right]$$
$${{B}^{t}}{{A}^{t}}=\left[ \begin{matrix}
5 & 5 \\
7 & -6 \\
\end{matrix} \right]$$
$${{\left( AB \right)}^{t}}={{B}^{t}}{{A}^{t}}$$
====Go To====
[[math-11-kpk:sol:unit02:ex2-1-p7 |< Question 8]]
[[math-11-kpk:sol:unit02:ex2-1-p9|Question 10 >]]