====== Question 10, Exercise 2.1 ======
Solutions of Question 10 of Exercise 2.1 of Unit 02: Matrices and Determinants. This is unit of A Textbook of Mathematics for Grade XI is published by Khyber Pakhtunkhwa Textbook Board (KPTB or KPTBB) Peshawar, Pakistan.
=====Question 10=====
Let $A=\begin{bmatrix}1 & -3 & 4 \\-3 & 2 & -5 \\4 & -5 & 0 \end{bmatrix}$ and $B=\begin{bmatrix}5 & 6 & 7 \\6 & -8 & 3 \\7 & 3 & 1 \end{bmatrix}$. Verify that $A$ and $B$ are symmetric. Also verify that $A+B$ is symmetric.
====Solution====
$$A=\left[ \begin{matrix}
1 & -3 & 4 \\
-3 & 2 & -5 \\
4 & -5 & 0 \\
\end{matrix} \right]$$
$$B=\left[ \begin{matrix}
5 & 6 & 7 \\
6 & -8 & 3 \\
7 & 3 & 1 \\
\end{matrix} \right]$$
For symmetric, we have to find out,
$$A=A^t$$
$$B=B^t$$
$$( A+B )^t=A^t+B^t$$
$$A^t=\left[ \begin{matrix}
1 & -3 & 4 \\
-3 & 2 & -5 \\
4 & -5 & 0 \\
\end{matrix} \right]$$
$$B^t=\left[ \begin{matrix}
5 & 6 & 7 \\
6 & -8 & 3 \\
7 & 3 & 1 \\
\end{matrix} \right]$$
$$A=\left[ \begin{matrix}
1 & -3 & 4 \\
-3 & 2 & -5 \\
4 & -5 & 0 \\
\end{matrix} \right]$$
$$A=A^t$$
$$B=\left[ \begin{matrix}
5 & 6 & 7 \\
6 & -8 & 3 \\
7 & 3 & 1 \\
\end{matrix} \right]$$
$$B=B^t$$
$$A+B=\left[ \begin{matrix}
1 & -3 & 4 \\
-3 & 2 & -5 \\
4 & -5 & 0 \\
\end{matrix} \right]+\left[ \begin{matrix}
5 & 6 & 7 \\
6 & -8 & 3 \\
7 & 3 & 1 \\
\end{matrix} \right]$$
$$A+B=\left[ \begin{matrix}
1+5 & -3+6 & 4+7 \\
-3+6 & 2-8 & -5+3 \\
4+7 & -5+3 & 0+1 \\
\end{matrix} \right]$$
$$A+B=\left[ \begin{matrix}
6 & 3 & 11 \\
3 & -6 & -2 \\
11 & -2 & 1 \\
\end{matrix} \right]$$
$$( A+B)^t=\left[ \begin{matrix}
6 & 3 & 11 \\
3 & -6 & -2 \\
11 & -2 & 1 \\
\end{matrix} \right]$$
$$A^t+B^t=\left[ \begin{matrix}
1 & -3 & 4 \\
-3 & 2 & -5 \\
4 & -5 & 0 \\
\end{matrix} \right]+\left[ \begin{matrix}
5 & 6 & 7 \\
6 & -8 & 3 \\
7 & 3 & 1 \\
\end{matrix} \right]$$
$$A^t+B^t=\left[ \begin{matrix}
1+5 & -3+6 & 4+7 \\
-3+6 & 2-8 & -5+3 \\
4+7 & -5+3 & 0+1 \\
\end{matrix} \right]$$
$$A^t+B^t=\left[ \begin{matrix}
6 & 3 & 11 \\
3 & -6 & -2 \\
11 & -2 & 1 \\
\end{matrix} \right]$$
$$( A+B )^t=A^t+B^t$$
====Go To====
[[math-11-kpk:sol:unit02:ex2-1-p8 |< Question 9]]
[[math-11-kpk:sol:unit02:ex2-1-p10|Question 11 >]]