====== Question 2, Exercise 2.2 ======
Solutions of Question 2 of Exercise 2.2 of Unit 02: Matrices and Determinants. This is unit of A Textbook of Mathematics for Grade XI is published by Khyber Pakhtunkhwa Textbook Board (KPTB or KPTBB) Peshawar, Pakistan.
=====Question 2(i)=====
Without evaluating state the reasons for the equalities.
$\left|\begin{matrix} 1 & 2 & 0 \\3 & 1 & 0 \\-1 & 2 & 0
\end{matrix}\right|=0$.
====Solution====
Given
$$\left| \begin{matrix}
1 & 2 & 0 \\
3 & 1 & 0 \\
-1 & 2 & 0 \\
\end{matrix} \right|=0$$
Because elements of third column are zero.
=====Question 2(ii)=====
Without evaluating state the reasons for the equalities.
$\left| \begin{matrix}1 & 2 & 3 \\-8 & 4 & -12 \\2 & -1 & 3 \end{matrix} \right|=0$.
====Solution====
Given
$$\left| \begin{matrix}
1 & 2 & 3 \\
-8 & 4 & -12 \\
2 & -1 & 3 \\
\end{matrix} \right|=0$$
Taking $-4$ common from $R_2$, we have
$$-4\left| \begin{matrix}
1 & 2 & 3 \\
2 & -1 & 3 \\
2 & -1 & 3 \\
\end{matrix} \right|=0$$
As elements of second and third rows are identical, so result is zero.
=====Question 2(iii)=====
Without evaluating state the reasons for the equalities.
$\left| \begin{matrix}1 & 3 & -2 \\3 & -1 & 1 \\2 & 1 & 4\end{matrix} \right|=\left| \begin{matrix}1 & 3 & 2 \\3 & -1 & 1 \\-2 & 1 & 4 \end{matrix} \right|$.
====Solution====
Given
$$\left| \begin{matrix}
1 & 3 & -2 \\
3 & -1 & 1 \\
2 & 1 & 4 \\
\end{matrix} \right|=\left| \begin{matrix}
1 & 3 & 2 \\
3 & -1 & 1 \\
-2 & 1 & 4 \\
\end{matrix} \right|$$
Right side is the transpose of left one.
=====Question 2(iv)=====
Without evaluating state the reasons for the equalities.
$\left| \begin{matrix}3 & 2 & 0 \\1 & 1 & -3 \\2 & 4 & -6 \end{matrix} \right|=-3\left| \begin{matrix}3 & 2 & 0 \\1 & 1 & 1 \\2 & 4 & 2 \end{matrix} \right|$.
====Solution====
Given
$$\left| \begin{matrix}3 & 2 & 0 \\1 & 1 & -3 \\2 & 4 & -6\\
\end{matrix} \right|=-3\left| \begin{matrix}3 & 2 & 0 \\1 & 1 & 1 \\2 & 4 & 2\\ \end{matrix} \right|$$
Multiply $-3$ by third column of R.H.S.
=====Question 2(v)=====
Without evaluating state the reasons for the equalities.
$\left| \begin{matrix}1 & 0 & -1 \\3 & 2 & 1 \\1 & -1 & 0 \end{matrix} \right|=-\left| \begin{matrix}1 & 0 & -1 \\1 & -1 & 0 \\3 & 2 & 1 \\\end{matrix} \right|$.
====Solution====
Given
$$\left| \begin{matrix}
1 & 0 & -1 \\
3 & 2 & 1 \\
1 & -1 & 0 \\
\end{matrix} \right|=-\left| \begin{matrix}
1 & 0 & -1 \\
1 & -1 & 0 \\
3 & 2 & 1 \\
\end{matrix} \right|$$
Interchanging the second and third rows on L.H.S.
=====Question 2(vi)=====
Without evaluating state the reasons for the equalities.
$\left| \begin{matrix}2 & 0 & 1 \\3 & 1 & 2 \\1 & 2 & 2 \end{matrix} \right|=\left| \begin{matrix}
2 & 0 & 1 \\5 & 5 & 6 \\1 & 2 & 2 \end{matrix} \right|$.
====Solution====
Given
$$\left| \begin{matrix}
2 & 0 & 1 \\
3 & 1 & 2 \\
1 & 2 & 2 \\
\end{matrix} \right|=\left| \begin{matrix}
2 & 0 & 1 \\
5 & 5 & 6 \\
1 & 2 & 2 \\
\end{matrix} \right|$$
Multiply the third row by $2$ and add it in 2nd row of L.H.S to get R.H.S.
====Go To====
[[math-11-kpk:sol:unit02:ex2-2-p1 |< Question 1]]
[[math-11-kpk:sol:unit02:ex2-2-p3|Question 3 >]]