====== Question 2 Exercise 3.4 ======
Solutions of Question 2 of Exercise 3.4 of Unit 03: Vectors. This is unit of A Textbook of Mathematics for Grade XI is published by Khyber Pakhtunkhwa Textbook Board (KPTB or KPTBB) Peshawar, Pakistan.
=====Question 2(i)=====
Show in two different ways that the vectors $\vec{a}$ and $\vec{b}$ are parallel to $\vec{a}=-\hat{i}+2 \hat{j}-3 \hat{k}, \quad \vec{b}=2 \hat{i}-4 \hat{j}+$ $6 \hat{k}$
====Solution====
First Way
\begin{align}\vec{a} \times \vec{b}&=\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
-1 & 2 & -3 \\
2 & -4 & 6
\end{array}\right| \\
& =(12-12) \hat{i}-(-6+6) \hat{j}+(4-4) \hat{k} \\
\Rightarrow \vec{a} \times \vec{b}&=0 . \\
& \Rightarrow \vec{a} \| \vec{b} .\end{align}
Second Way
\begin{align}\vec{a} \cdot \vec{b}&=(-\hat{i}+2 \hat{j}-3 \hat{k}) \cdot(2 \hat{i}-4 \hat{j}+6 \hat{k}) \\
\Rightarrow \quad \vec{a} \cdot \vec{b}&=-1(2)+2(-4)-3(6) \\
\Rightarrow \quad \vec{a} \cdot \vec{b}&=-28 .\end{align}
Also \begin{align}|\vec{a}|&=\sqrt{(-1)^2+(2)^2+(-3)^2}\\
\Rightarrow|\vec{a}|&=\sqrt{14}\\
|\vec{b}|&=\sqrt{(2)^2+(-4)^2+(6)^2} \\
\Rightarrow|\vec{b}|&=\sqrt{56}\\
\cos \theta&=\dfrac{\vec{a} \cdot \vec{b}}{|\vec{a}|}=\dfrac{-28}{\sqrt{14} \sqrt{56}}\\
\Rightarrow \quad \theta&=\cos ^{-1}\left(\frac{-28}{2 \sqrt{14} \sqrt{14}}\right) \\
\Rightarrow \quad \theta&=\cos ^{-1}(-1)=180^{\circ} . \\
\Rightarrow \quad \vec{a} \| \vec{b} .\end{align}
=====Question 2(ii)=====
Show in two different ways that the vectors $\vec{a}$ and $\vec{b}$ are parallel to $\vec{a}=3 \hat{i}+6 \hat{j}-9 \hat{k}$, $\vec{b}=\hat{i}+2 \hat{j}-3 \hat{k}$
====Solution====
First Way
\begin{align}\vec{a} \times \vec{b}&=\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
3 & 6 & -9 \\
1 & 2 & -3
\end{array}\right| \\
& =(-18+18) \hat{i}+(-9+9) \hat{j}+(6-6) \hat{k} \\
\Rightarrow \vec{a} \times \vec{b}&=0 . \\
& \Rightarrow \vec{a} \| \vec{b} .
\end{align}
Second Way
\begin{align}\vec{a} \cdot \vec{b}&=(3 \hat{i}+6 \hat{j}-9 \hat{k}) \cdot(\hat{i}+2 \hat{j}-3 \hat{k}) \\
\Rightarrow \quad \vec{a} \cdot \vec{b}&=3(1)+6(2)-9(-3) \\
\Rightarrow \vec{a} \cdot \vec{b}&=42\end{align}
Also \begin{align}|\vec{a}|&=\sqrt{(3)^2+(6)^2+(-9)^2}\\
\Rightarrow|\vec{a}|&=\sqrt{12 \overline{6}}\text{ and}\\
|\vec{b}|&=\sqrt{(1)^2+(2)^2+(-3)^2} \\
\Rightarrow|\vec{b}|&=\sqrt{14} .\end{align}
Now we know that\\
\begin{align}\cos \theta&=\dfrac{\vec{a} \cdot \vec{b}}{i|\vec{b}|}=\dfrac{42}{\sqrt{14} \sqrt{126}} \\
\Rightarrow \theta&=\cos^{-1}\left(\sqrt{\dfrac{42 \times 42}{14 \times 126}}\right) \\
\Rightarrow \theta&=\cos^{-1}\left(\sqrt{\dfrac{1764}{1764}}\right) \\
\Rightarrow \theta&=\cos^{-1}(1)=0^{\circ} \\
\Rightarrow \quad \vec{a} \| \vec{b}.\end{align}
====Go To====
[[math-11-kpk:sol:unit03:ex3-4-p1 |< Question 1]]
[[math-11-kpk:sol:unit03:ex3-4-p3|Question 3 >]]