====== Question 5 Exercise 3.4 ====== Solutions of Question 5 of Exercise 3.4 of Unit 03: Vectors. This is unit of A Textbook of Mathematics for Grade XI is published by Khyber Pakhtunkhwa Textbook Board (KPTB or KPTBB) Peshawar, Pakistan. =====Question 5(i)===== Use the vector product to compute the area of the triangle with the given vertices $P(-2,-3), \quad Q(3,2)\quad$ and $\quad R(-1,-8)$ ====Solution==== Let $P Q$ and $\bar{P} R$ be the adjacent sides of parallelogram determined, so the required area of the triangle if hall the area of the parallelogram, that is:\\ \begin{align}\text{Area of triangle}&=\dfrac{1}{2}|\overrightarrow{P Q} \times \overrightarrow{P R}| \\ \text { Since } \overrightarrow{P Q}&=(3,2)-(-2 ,-3) \\ \Rightarrow \overrightarrow{P Q}&=(5,5) \\ \overrightarrow{P R}&=(-1,-8)-(-2 ,-3) \\ \Rightarrow \overrightarrow{P R}&=(1,-5) \\ \overrightarrow{PQ}\times \overrightarrow{P R}&=\left|\begin{array}{ccc} \hat{i} & \hat{j} & \hat{k} \\ 5 & 5 & 0\\ 1 & -5 & 0 \end{array}\right|\\ \Rightarrow \overrightarrow{P Q} \times \overrightarrow{P R}&=(-25-5) \hat{k}=-30 \hat{k} \\ \Rightarrow|\overrightarrow{P Q} \times \overrightarrow{P R}|&=30 \\ \therefore \text { Area of triangle }& =\dfrac{1}{2}|\overrightarrow{PQ} \times \overrightarrow{P R}|\\ &=\dfrac{30}{2}=15 \text { units square. }\end{align} =====Queswtion 5(ii)===== Use the vector product to compute the area of the triangle with the given vertices $P(-2,-1,3), Q(1,2,-1)$ and $R(4.3,-3)$ ====Solution==== Let $\overrightarrow{P Q}$ and $\overrightarrow{P R}$ be the adjacent sides of parallelogram determined, so the required area of the triangle if half the area of the parallelogram, that is:\\ $$\text { Area of triangle }=\dfrac{1}{2}|\overrightarrow{P Q} \times \overrightarrow{P R}|$$\\ Since \begin{align}\overrightarrow{P Q}&=(1,2 .-1)-(-2,-1,3)\\ \Rightarrow \overrightarrow{P Q}&=(3,3,-4)\\ \overrightarrow{P R}&=(4,3,-3)-(1.2,-1)\\ \Rightarrow \overrightarrow{P R}&=(3,1,-2).\end{align} \begin{align}\text { so } \overrightarrow{P Q} \times \overrightarrow{P R}&=\left|\begin{array}{ccc} \hat{i} & \hat{j} & \hat{k} \\ 3 & 3 & -4 \\ 3 & 1 & -2 \end{array}\right| \\ \Rightarrow \overrightarrow{P Q} \times \overrightarrow{P R}& =(-6+4) \hat{i}-(-6-12) \hat{j}+(3-9) \hat{k} \\ \Rightarrow \overrightarrow{P Q} \times \overrightarrow{P R}&=-2 \hat{i}-6 \hat{j}-6 \hat{k} \\ \Rightarrow|\overrightarrow{P Q} \times \overrightarrow{P R}|& =\sqrt{(-2)^2+(-6)^2+(-6)^2} \\ \Rightarrow|\overrightarrow{P Q} \times \overrightarrow{P R}|&=\sqrt{76} \\ \therefore \text { Area of triangle }&=\dfrac{1}{2} | \vec{P} \hat{Q} \times \overrightarrow{P R}| \\ \text { Area of triangle }&=\dfrac{\sqrt{76}}{2}=\sqrt{19} \text { units square. }\end{align} ====Go To==== [[math-11-kpk:sol:unit03:ex3-4-p4 |< Question 4]] [[math-11-kpk:sol:unit03:ex3-4-p6|Question 6 >]]