====== Question 7 & 8 Exercise 3.4 ======
Solutions of Question 7 & 8 of Exercise 3.4 of Unit 03: Vectors. This is unit of A Textbook of Mathematics for Grade XI is published by Khyber Pakhtunkhwa Textbook Board (KPTB or KPTBB) Peshawar, Pakistan.
=====Question 7=====
If $\vec{A}+\vec{B}+\vec{C}=\vec{O}$, show that
$$\vec{A} \times \vec{B}=\vec{B} \times \vec{C}=\vec{C} \times \vec{A}.$$
====Solution====
We are given\\
$$\vec{A}+\vec{B}+\vec{C}=\vec{O} \text {. }$$\\
Taking cross product of $\vec{A}$, of both sides with above. we get\\
$$\vec{A} \times(\vec{A}+\vec{B}+\vec{C})=0$$\\
\begin{align}\Rightarrow \vec{A} \times \vec{A}+\vec{A} \times \vec{B}+\vec{A} \times \vec{C}&=\vec{O}...(1) \\
\Rightarrow \vec{A} \times \vec{B}+\vec{A} \times \vec{C} &= \vec{O} \quad \because \vec{A} \| \vec{A} \\
\Rightarrow \vec{A} \times \vec{B}&=-\vec{A} \times \vec{C} \\
\Rightarrow \vec{A} \times \vec{B}&=\vec{C} \times \vec{A}...(2)\end{align}
$\because \quad$ cross product is anti-commutative\\
$$\Rightarrow \vec{A} \times \vec{B}=\vec{C} \times \vec{A}$$\\
Taking cross product of $\vec{B}$ with (1), we get\\
\begin{align}\vec{B} \times(\vec{A}+\vec{B}+\vec{C})&=0 \\
\Rightarrow \vec{B} \times \vec{A}+\vec{B} \times \vec{B}+\vec{B} \times \vec{C}&=\vec{O} \\
\Rightarrow \vec{B} \times \vec{A}+\vec{B} \times \vec{C}&=\vec{O} \quad \because \vec{B} \| \vec{B} \\
\Rightarrow \vec{B} \times \vec{C}&=-\vec{B} \times \vec{A} \\
\Rightarrow \vec{B} \times \vec{C}&=\vec{A} \times \vec{B}....(3)\end{align}
$\because$ crass product is anti-commuative\\
$$\vec{B} \times \vec{C}=\vec{A} \times \vec{B}$$\\
From (2) and (3), we get\\
$$\vec{A} \times \vec{B}=\vec{B} \times \vec{C}=\vec{C} \times \vec{A} \text {. }$$\\
=====Question 8 (i)=====
Find a unit vector perpendicular to both $\vec{a}=\hat{i}+\hat{j}+2 \hat{k}$ and $\vec{b}=-2 \hat{i}+\hat{j}-3 \hat{k}$\\
====Solution====
Let $\hat{n}$ be unit vector perpendicular to both $\vec{a}$ and $\vec{b}$ then\\
\begin{align}\hat{n}&=\dfrac{\vec{a} \times \vec{b}}{\mid \vec{a} \times \vec{b}} \ldots \ldots \ldots(1) \\
\vec{a} \times \vec{b}&=\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
1 & 1 & 2 \\
2 & 1 & -3
\end{array}\right| \\
\Rightarrow \vec{a} \times \vec{b}&=(-3-2) \hat{i}-(-3-4) \hat{j}+(1-2) \hat{k} \\
\Rightarrow \vec{a} \times \vec{b}&=-5 \hat{i}+7 \hat{j}-\hat{k}\end{align}
\begin{align}\vec{a} \times \vec{b} \mid&=\sqrt{(-5)^2+(7)^2+(-1)^2} \\
|\vec{a} \times \vec{b}|&=\sqrt{75} .\end{align}
Putting in (1), we have \\
\begin{align}\hat{n}&=\dfrac{\vec{a} \times \vec{b}}{\vec{a} \times \vec{b}}\\
&=\dfrac{-5 \hat{i}+7 \hat{j}-\hat{k}}{\sqrt{75}}.\end{align}
Which is the required unit vector perpendicular to both $\vec{a}$ and $\vec{b}$.
=====Question 8 (ii)=====
Find a unit vector perpendicular to both Find a vector of magnitude 10 and perpendicular to both
$$\vec{a}=2 \hat{i}-3 \hat{j}+4 \hat{k} . \quad \vec{b}=4 \hat{i}-2 \hat{j}-4 \hat{k} \text {. }$$
=====Solution=====
Let $\hat{n}$ be unil vector perpendicular to both $\vec{a}$ and $\vec{b}$ then\\
\begin{align}
\hat{n}=\dfrac{\vec{a} \times \vec{b}}{\vec{a} \times \vec{b}} \\
\vec{a} \times \vec{b}&=\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
2 & -3 & 4 \\
4 & -2 & -4
\end{array}\right| \\
\vec{a} \times \vec{b}&=(12+8) \hat{i}-(-8-16) \hat{j}+ (-4+12) \hat{k} \\
\vec{a} \times \vec{b}&=2 \hat{i}-24 \hat{j}+8 \hat{k} \\
|\vec{a} \times \vec{b} |&=\sqrt{(20)^2+(24)^2+(8)^2} \\
| \vec{a} \times \vec{b}|=\sqrt{1040} \\
\Rightarrow|\vec{a} \times \vec{b}|&=2 \sqrt{65} .\end{align}
Putting in (1), we have\\
\begin{align}\hat{n}&=\dfrac{\vec{a} \times \vec{b}}{\vec{a} \times \vec{b}}\\
&=\dfrac{20 \hat{i}+24 \hat{j}+8 \hat{k}}{2 \sqrt{65}} . \\
\Rightarrow \hat{n}&=\dfrac{10 \hat{i}+12 \hat{j}+4 \hat{k}}{\sqrt{65}} .\end{align}
Now let $\vec{c}$ be a vector perpendicular to both and having magnitude \\
$\vec{c} =10$ then\\
$\vec{c}= \vec{c} \cdot \hat{n}=10\left(\dfrac{10 \hat{i}+12 \hat{j}+4 \hat{k}}{\sqrt{65}}\right)$, is the required vector.\\
====Go To====
[[math-11-kpk:sol:unit03:ex3-4-p6 |< Question 6]]
[[math-11-kpk:sol:unit03:ex3-4-p8|Question 9 >]]