====== Question 8 & 9 Review Exercise 3 ======
Solutions of Question 8 & 9 of Review Exercise 3 of Unit 03: Vectors. This is unit of A Textbook of Mathematics for Grade XI is published by Khyber Pakhtunkhwa Textbook Board (KPTB or KPTBB) Peshawar, Pakistan.
=====Question 8=====
Find the area of triangle whose vertices are $(0,0,2),(-1,3,2),(1,0,4)$.
====Solution====
Lel $A(0,0,2)$, $B(-1,3,2)$ and $C(1,0,4)$.
Let $\vec{a}=\overrightarrow{A B}=(-1,3,2)-(0,0,2)$ $\Rightarrow \vec{a}=(-1,3,0)$
$\vec{b}=\overrightarrow{B C}=(1,0,4)-(-1,3,2)$ $\Rightarrow \vec{b}=(2,-3,2)$.
We know that area of triangle is half of the area of parallelogram.\\
$$ \text{Area of triangle} =\dfrac{1}{2}|\vec{a} \times \vec{b}|....(1)$$.
\begin{align}\vec{a} \times \vec{b}&=\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
-1 & 3 & 0 \\
2 & -3 & 2
\end{array}\right| \\
\therefore \vec{a} \times \vec{b} &=(\hat{i}+2 \hat{j} \cdot 3 \hat{k} \\
\Rightarrow | \vec{a} \times \vec{b} |&=\sqrt{(6)^2+(2)^2+(-3)^2} \\
\Rightarrow | \vec{a} \times \vec{b}|&=\sqrt{49}= 7 .\end{align}
Putting $|\vec{a} \times \vec{b}|=7$ in (1), we get\\
$$\text{Area of triangle} =\dfrac{7}{2}\text{ units square}$$.
=====Question 9=====
Find the area of parallelogram with vertices $A(1,2, 3),\quad B(5,8,1),\quad$ $C(4,-2,2)\quad$ and $\quad D(0,-8,-2)$.\\
====Solution====
\begin{align}\text { Let } \vec{a} &=\overrightarrow{A B}=(5,8 ,1)-(1,2 ,-3) \\
\Rightarrow \vec{a} &=(4,6 ,4) \\
\vec{b}&=\overrightarrow{A C}=(4,2 ,2)- (1,2 ,3)\\
\Rightarrow \vec{b}&=(3,-4,5)\end{align}
Now
\begin{align}\vec{a} \times \vec{b}&=\left|\begin{array}{lll} i & j & k \\ 4 & 6 & 4 \\ 3 & 4 & 5\end{array}\right|\\
\Rightarrow \vec{a} \times \vec{b}& =(30-16) \hat{i}-(20-12) \hat{j}+(-16- 18) \hat{k} \\
\Rightarrow \vec{a} \times \vec{b}&=46 \hat{i}-8 \hat{j} - 34 \hat{k} . \\
\Rightarrow|\vec{a} \times \vec{b}| & =\sqrt{(46)^2+(-8)^2+(-34)^2} \\
& =\sqrt{3336} .\end{align}
Thus the area of parallelogram is: $|\vec{a} \times \vec{b}|=\sqrt{3336}$ units square.
====Go To====
[[math-11-kpk:sol:unit03:Review-ex3-p4 |< Question 6 & 7]]
[[math-11-kpk:sol:unit03:Review-ex3-p6|Question 10 >]]