====== Question 1 Exercise 4.4 ====== Solutions of Question 1 of Exercise 4.4 of Unit 04: Sequence and Series. This is unit of A Textbook of Mathematics for Grade XI is published by Khyber Pakhtunkhwa Textbook Board (KPTB or KPTBB) Peshawar, Pakistan. =====Question(i)===== Write the first five terms of geometric ric sequence given that $a_1=5, \quad r=3$ ====Solution==== The gcometric sequence is $a_1, a_1 r, a_1 r^2, a_1 r^3, a_1 r^4, \ldots$, so for $a_1=5 ; r=3$, we have \begin{align}&5,5.3,5.3^2, 5.3^3, 5.3^4, \ldots\\ \Rightarrow &5,15,45,135,405, \ldots\end{align} =====Question(ii)===== Write the first five terms of geometric ric sequence given that $a_1=8, \quad r=-\dfrac{1}{2}$ ====Solution==== The geomerric sequence is $a_1, a_1 r, a_1 r^2, a_1 r^3, a_1 r^4, \ldots$,\\ so for $$a_1=8 ; r=-\dfrac{1}{2}$$ we have\\ \begin{align}&8,8(-\dfrac{1}{2}), 8(-\dfrac{1}{2})^2, 8(-\dfrac{1}{2})^3,8(-\dfrac{1}{2})^4, \ldots\\ \Rightarrow &8,-4,2,-1, \dfrac{1}{2}, \ldots\end{align} =====Question(iii)===== Write the first five terms of geometric ric sequence given that $a_1=-\dfrac{9}{16}, \quad r=-\dfrac{2}{3}$ ====Solution==== The geometric sequence is $a_1, a_1 r, a_1 r^2, a_1 r^3, a_1 r^4, \ldots$\\ so for $$a_1=-\dfrac{9}{16} ; r=-\dfrac{2}{3}$$ we have\\ \begin{align}&-\dfrac{9}{16} ,-\dfrac{9}{16}(-\dfrac{2}{3}),-\dfrac{9}{16}(-\dfrac{2}{3})^2,\\ &-\dfrac{9}{16} \cdot(-\dfrac{2}{3})^3,-\dfrac{9}{16}(-\dfrac{2}{3})^4, \ldots\\ \Rightarrow&-\dfrac{9}{16}, \dfrac{3}{8},-\dfrac{1}{4}, \dfrac{1}{6},-\dfrac{1}{9},...\end{align} =====Question(iv)===== Write the first five terms of geometric ric sequence given that $a_1=\dfrac{x}{y}, \quad r=-\dfrac{y}{x}$ ====Solution==== The geometric sequence is, $a_1, a_1 r, a_1 r^2, a_1 r^3, a_1 r^4, \ldots$,\\ so for $$a_1=\dfrac{x}{y} r=-\dfrac{y}{x}$$ we have,\\ \begin{align}&\dfrac{x}{y}, \dfrac{x}{y} \cdot(-\dfrac{y}{x}), \dfrac{x}{y}(-\dfrac{y}{x})^2, \dfrac{x}{y}(-\dfrac{y}{x})^3,\dfrac{x}{y}(-\dfrac{y}{x})^4, \ldots \\ \Rightarrow &\dfrac{x}{y},-1, \dfrac{y}{x},-\dfrac{y^2}{x^2}, \dfrac{y^3}{x^3}, \ldots\end{align} ====Go To==== [[math-11-kpk:sol:unit04:ex4-4-p2|Question 2 & 3 >]]