====== Question 8 Exercise 4.4 ====== Solutions of Question 8 of Exercise 4.4 of Unit 04: Sequence and Series. This is unit of A Textbook of Mathematics for Grade XI is published by Khyber Pakhtunkhwa Textbook Board (KPTB or KPTBB) Peshawar, Pakistan. =====Question 8(i)===== Find the geometric mean of $3.14$ and $2.71$ ====Solution==== Here $a=3.14$ and $b=2.71$\\ then $$G= \pm \sqrt{(3.14)(2.71)}= \pm 2.94$$ Thus $$G=2.94 \quad \text{or} \quad -2.94$$ =====Question 8(ii)===== Find the geometric mean of $-6$ and $-216$ ====Solution==== Here $a=-6$ and $b=-216$ then\\ \begin{align}G&= \pm \sqrt{(-6)(-216)}= \pm \sqrt{1296} \\ \Rightarrow G&= \pm 36\end{align} Thus\\ $$G=36 \quad \text{or} \quad -36$$ =====Question 8(iii)===== Find the geometric mean of $x+y$ and $x-y$ ====Solution==== Here $a=x+y$ and $b=x-y$\\ then $$G= \pm \sqrt{(x+y)(x-y)}= \pm \sqrt{x^2-y^2}$$ =====Question 8(iv)===== Find the geometric mean of $\sqrt{2}+3$ and $\sqrt{2}-3$ ====Solution==== Here $a=\sqrt{2}+3$ and \begin{align}b&=\sqrt{2}-3 \text { then } \\ G&= \pm \sqrt{(\sqrt{2}+3)(\sqrt{2}-3)} \\ \Rightarrow G&= \pm \sqrt{4-9}= \pm \sqrt{5}i\end{align} It does not exists. ====Go To==== [[math-11-kpk:sol:unit04:ex4-4-p4 |< Question 6 & 7 ]] [[math-11-kpk:sol:unit04:ex4-4-p6|Question 9 >]]