====== Question 5 Exercise 5.3 ======
Solutions of Question 5 of Exercise 5.3 of Unit 05: Miscullaneous Series. This is unit of A Textbook of Mathematics for Grade XI is published by Khyber Pakhtunkhwa Textbook Board (KPTB or KPTBB) Peshawar, Pakistan.
=====Question 5=====
Find $n$ term and sum to $n$ terms each of the series $3+9+21+45+93+189+\ldots$
====Solution====
\begin{align}
& a_2-a_1=9-3=6 \\
& a_3-a_2=21-9=12 \\
& a_4-a_3=45-21=24\\
& \text {... ... ... } \\
& \text {... ... ... } \\
&a_n-a_{n-1}=(\mathrm{n}-1)\quad \text{ term of the sequence}\quad 6,12,24, \ldots\end{align}
which is a G.P. Adding column wise, we get
\begin{align}
a_n-a_1&
=6+12+24+\ldots+(n-1) \text {terms } \\
& =\dfrac{6[2^{n-1}-1]}{2-1} \\
\Rightarrow a_n-a_1&=6 \cdot 2^{n-1}-6 \\
\Rightarrow a_n&=6 \cdot 2^{n-1}-6+a_1 \\
\Rightarrow a_n&=6 \cdot 2^{n-1}-6+3 \quad \because a_1=3\\
\Rightarrow a_n&=3(2^n-1)\end{align}
Taking summation of the both sides
\begin{align}
\sum_{r=1}^n a_r&=6 \sum_{r=1}^n 2^{r-1}-3 \sum_{r=1}^n 1 \\
& =6 \cdot \dfrac{1 \cdot[2^n-1]}{2-1}-3 n \\
\Rightarrow \sum_{r=1}^n a_r&=6 \cdot(2^n-1)-3 n\\
\Rightarrow \sum_{r=1}^n a_r&=3(2^{n+1}-n-2)\\
\text{Hence}\quad 3(2^n-1);3(2^{n+1}-n-2)\end{align}
====Go To====
[[math-11-kpk:sol:unit05:ex5-3-p4 |< Question 4 ]]
[[math-11-kpk:sol:unit05:ex5-3-p6|Question 6 >]]