====== Question 8 Review Exercise ======
Solutions of Question 8 of Review Exercise of Unit 05: Miscullaneous Series. This is unit of A Textbook of Mathematics for Grade XI is published by Khyber Pakhtunkhwa Textbook Board (KPTB or KPTBB) Peshawar, Pakistan.
=====Question 8(i)=====
Find the sum of $n$ terms of the series whose $n^{t h}$ term is $n^3+3^n.$
====Solution====
The $n^h$ term is:
$$a_n=n^3+3^n$$
Taking summation of the both sides
\begin{align}\sum_{r=1}^n a_r&=\sum_{r=1}^n r^3+\sum_{r=1}^n 3^r \\
& =[\dfrac{n(n+1)}{2}]^2+\dfrac{3(3^n-1)}{3-1} \\
& =\dfrac{n^2(n+1)^2}{4}+\dfrac{3}{2}(3^n-1) \end{align}
Thus the sum of $n$ terms is:
$$S_n=\dfrac{n^2(n+1)^2}{4}+\dfrac{3}{2}(3^n-1)$$
=====Question 8(ii)=====
Find the sum of $n$ terms of the series whose $n^{t h}$ term is $2 n^2+3 n$
====Solution====
The $n^{t h}$ term is:
$$a_n=2 n^2+3 n$$
Taking summation on the both sides
\begin{align}
\sum_{r=1}^n a_r&=2 \sum_{r=1}^n r^2+3 \sum_{r=1}^n r \\
& =2 \cdot[\dfrac{n(n+1)(2n+1)}{6}]++3 \dfrac{n(n+1)}{2} \\
& =\dfrac{n(n+1)(2n+1)}{3}+\dfrac{3 n(n+1)}{2} \\
& =n(n+1)\dfrac{(2n+1)}{3} +\dfrac{3}{2} \\
& =n(n+1)\dfrac{2(2n+1)+9}{6}\\
& =\dfrac{n(n+1)(4n+11)}{6}\end{align}
Thus sum to $n$ terms is:
$$S_n=\dfrac{n(n+1)(4n+11)}{6}$$
=====Question 8(iii)=====
Find the sum of $n$ terms of the series whose $n^{t h}$ term is $n(n+1)(n+4)$
====Solution====
The $n^{\text {th }}$ term is:
\begin{align}
& a_n=n(n+1)(n+4) \\
& a_n==n(n^2+5 n+4) \\
& a_n=n^3+5 n^2+4 n\end{align}
Taking summation of the both sides
\begin{align}
\sum_{r=1}^n a_r&=\sum_{r=1}^n r^3+5 \sum_{r=1}^n r^2+4 \sum_{r=1}^n r \\
& =\dfrac{n^2(n+1)^2}{4}+5 \cdot \dfrac{n(n+1)(2 n+1)}{6}+4 \dfrac{n(n+1)}{2} \\
& =\dfrac{n(n+1)}{2} \cdot[\dfrac{n(n+1)}{2}+\dfrac{10 n+5}{3}+4] \\
& =\dfrac{n(n+1)}{2} \cdot[\dfrac{3 n(n+1)+2(10 n+5)+24}{6}] \\
& =\dfrac{n(n+1)}{2} \cdot[\dfrac{3 n^2+3 n+20 n+10+24}{6}] \\
& =\dfrac{n(n+1)(3 n^2+23 n+34)}{12}\end{align}
Thus the sum to $n$ terms is:
$$S_n=\dfrac{n(n+1)(3 n^2+23 n+34)}{12}$$
=====Question 8(iv)=====
Find the sum of $n$ terms of the series whose $n^{t h}$ term is $(2 n-1)^2$
====Solution====
The $n^{t h}$ term is:
\begin{align}
& a_n=(2 n-1)^2 \\
& a_n=4 n^2-4 n+1\end{align}
Taking summation of the both sides
\begin{align}
\sum_{r=1}^n a_r&=4 \sum_{r=1}^n r^2-4 \sum_{r=1}^n r+\sum_{r=1}^n 1 \\
& =4 \dfrac{n(n+1)(2 n+1)}{6}-4 \dfrac{n(n+1)}{2}+n \\
& =\dfrac{n(n+1)}{2} \cdot[\dfrac{4(2 n+1)}{6}-2]+n \\
& =\dfrac{n(n+1)}{2} \cdot[\dfrac{8 n+4-12}{6}]+n \\
& =\dfrac{n(n+1)(8 n-8)}{12}+n \\
& =\dfrac{4n(n+1)(2 n-2)}{12}+n \\
& =\dfrac{4(n(2n^2-2n+2n-2))}{12}+n \\
& =\dfrac{n(2n^2-2)}{3}+n\\
& =\dfrac{n(2n^2-2+3)}{3}\\
& =\dfrac{n(2n^2+1)}{3}\end{align}
Thus the sum to $n$ terms is:
$$S_n=\dfrac{n(2n^2+1)}{3}$$
====Go To====
[[math-11-kpk:sol:unit05:Re-ex5-p5 |< Question 7 ]]
[[math-11-kpk:sol:unit05:Re-ex5-p7|Question 9 >]]