====== Question 3 and 4 Exercise 6.2 ======
Solutions of Question 3 and 4 of Exercise 6.2 of Unit 06: Permutation, Combination and Probablity. This is unit of A Textbook of Mathematics for Grade XI is published by Khyber Pakhtunkhwa Textbook Board (KPTB or KPTBB) Peshawar, Pakistan.
=====Question 3(i)=====
Prove by Fundamental principle of counting $^n P_r=n(^{n-1} P_{r-1})$
====Solution====
We are given that:
$$^n P_r=n({ }^{n-1} P_{r-1})$$
We are taking the right hand side of the equation
\begin{align}n(^{n-1} P_{r-1})&=n \dfrac{(n-1) !}{((n-1)-(r-1)) !} \\
& =\dfrac{n(n-1) !}{(n-r) !}\\
&=\dfrac{n !}{(n-r) !}\\
&=^n P_r\end{align}
=====Question 3(ii)=====
Prove by Fundamental principle of counting $^n P_r=^{n-1} P_r+r(^{n-1} P_{r-1})$
====Solution====
We are given:
$$^n P_r=^{n-1} P_r+r({ }^{n-1} P_{r-1})$$
Taking R.H.S of the equation
\begin{align}^{n-1} P_r+r(^{n-1} P_{r-1})&=\dfrac{(n-1) !}{(n-1-r) !}+r \dfrac{(n-1) !}{(n-1-(r-1)) !} \\
& =\dfrac{(n-1) !}{(n-r-1) !}+r \dfrac{(n-1) !}{(n-r) !} \\
& =\dfrac{(n-1) !}{(n-r-1) !}+r \dfrac{(n-1) !}{(n-r)(n-r-1) !} \\
& =\dfrac{(n-1) !}{(n-r-1) !}[1+\dfrac{r}{n-r}] \\
& =\dfrac{(n-1) !}{(n-r-1) !}[\dfrac{n-r+r}{n-r}] \\
& =\dfrac{n(n-1) !}{(n-r)(n-r-1) !}\\
&=\dfrac{n !}{(n-r) !} \\
& =^n P_r\end{align}
which is the desired L.H.S.
=====Question 4=====
In how many ways can a police department arrange eight suspects in a line up?
====Solution====
The total number of suspects are eight sọ, $n=8$
The total number of arrangements are:
\begin{align}^n P_r&=^8 P_8\\
&=\dfrac{8 !,}{(8-8) !}\\
&=8 !=40,320\end{align}
====Go To====
[[math-11-kpk:sol:unit06:ex6-2-p1 |< Question 1 & 2 ]]
[[math-11-kpk:sol:unit06:ex6-2-p3|Question 5 & 6 >]]