====== Question 2 Exercise 6.3 ======
Solutions of Question 2 of Exercise 6.3 of Unit 06: Permutation, Combination and Probablity. This is unit of A Textbook of Mathematics for Grade XI is published by Khyber Pakhtunkhwa Textbook Board (KPTB or KPTBB) Peshawar, Pakistan.
=====Question 2=====
Find $n$ and $r$ if ${ }^n P_r=840$ and ${ }^n C_r=35$.
====Solution====
We are given:
\begin{align}
&^n P_r=\dfrac{n !}{(n-r) !}=840 ....(i)\\
&^n C_r=\dfrac{n !}{(n-r) ! r !}=35....(ii)\end{align}
Dividing Eq.(i) by Eq.(ii)
\begin{align}\dfrac{n !}{(n-r) !} \cdot \dfrac{(n-r) ! r !}{n !}&=\dfrac{840}{35}\\
r!&=24\\
\text{or}\quad r &=4\end{align}
Putting $r=4$ in Eq.(ii), we get
\begin{align}
& { }^n C_4=\dfrac{n !}{(n-4) ! 4 !}=35 \\
& \Rightarrow \dfrac{n(n-1)(n-2)(n-3)(n-4) !}{(n-4) !}=35 \times 24=840 \\
& \Rightarrow n(n-1)(n-2)(n-3)=840 \\
& \Rightarrow n(n-3)(n-1)(n-2)=840 \\
& \Rightarrow(n^2-3 n)(n^2-3 n+2)=840 \end{align}
Let $y=n^2-3 n$ then the above last equation becomes
\begin{align}
& y(y+2)=840 \\
& \Rightarrow y^2+2 y-840=0 \\
& \Rightarrow y^2+30 y-28 y-840=0 \\
& \Rightarrow y(y+30)-28(y+30)=0\\
&\Rightarrow(y-28)(y+30)=0\\
\Rightarrow \text{Either} y&=28, \text{or} y=-30\end{align}
When $y=28$ then
\begin{align}
& n^2-3 n=28 \\
& \Rightarrow n^2-3 n-28=0 \\
& \Rightarrow n^2-7 n-4 n-28=0 \\
& \Rightarrow n(n-7)+4(n-7)=0 \\
& \Rightarrow(n-7)(n+4)=0
\end{align}
$\Rightarrow$ Either $n=7$, or $n=-4$.
But $n$ can not be negative, so $n=7$.
\begin{align}\text{When} &y=-30 \text{then}\\
& n^2-3 n=-30 \\
& \Rightarrow n^2-3 n+30=0\end{align}
$\Rightarrow n=\dfrac{3 \pm \sqrt{111} i}{2}$ But $n$ can not be complex. hence the only value of $n=7$ and $r=4$.
====Go To====
[[math-11-kpk:sol:unit06:ex6-3-p1 |< Question 1 ]]
[[math-11-kpk:sol:unit06:ex6-3-p3|Question 3 >]]