====== Question 2 Review Exercise 6 ======
Solutions of Question 2 of Review Exercise 6 of Unit 06: Permutation, Combination and Probablity. This is unit of A Textbook of Mathematics for Grade XI is published by Khyber Pakhtunkhwa Textbook Board (KPTB or KPTBB) Peshawar, Pakistan.
=====Question 2(i)=====
If ${ }^{2 n} C_r={ }^{2 n} C_{r+2}$; find $r$.
====Solution====
Given that:
\begin{align}
{ }^{2 n} C_r&={ }^{2 n} C_{r+2} \\
\Rightarrow \dfrac{(2 n) !}{(2 n-r) ! r !}&=\dfrac{(2 n) !}{(2 n-(r+2)) !(r+2) !}\end{align}
Dividing both sides by $(2 n)$ ! we get
\begin{align}
\Rightarrow \dfrac{1}{(2 n-r) ! r !}&=\dfrac{1}{(2 n-r-2) !(r+2) !} \\
\Rightarrow \dfrac{1}{(2 n-r)(2 n-r-1)(2 n-r-2) ! r !}&=\dfrac{1}{(2 n-r-2) !(r+2) !} \\
\Rightarrow \dfrac{1}{(2 n-r)(2 n-r-1) r !}& =\dfrac{1}{(r+2)(r+1) r !} \\
\Rightarrow(r+2)(r+1)&=(2 n-r)(2 n-r-1) \\
\Rightarrow r^2+3 r+2&= 4 n^2-2 n r-2 n-2 n r+r^2+r \\
\Rightarrow 3 r+2&=4 n^2-4 n r-2 n+r \\
\Rightarrow 4 n r+3 r-r&=4 n^2-2 n \\
\Rightarrow 4 n r+2 r&=2(2 n^2-n) \\
\Rightarrow 2 r(2 n+1)&=2(2 n^2-n)\\
\Rightarrow r&=\dfrac{2 n^2-n}{2 n+1}\end{align}
=====Question 2(ii)=====
If ${ }^{18} C_r={ }^{18} C_{r+2}$; find ${ }^r C_5$.
====Solution====
Given that:
\begin{align}
{ }^{18} C_r&={ }^{18} C_{r+2} \\
\Rightarrow \dfrac{(18) !}{(18-r) ! r !}&= \dfrac{18 !}{[18-(r+2)] !(r+2) !}\end{align}
Dividing both sides by $18!$
\begin{align}\dfrac{1}{(18-r) ! r !}&= \dfrac{1}{(16-r) !(r+2)(r+1) r !} \\
\Rightarrow \dfrac{1}{(18-r)(17-r)(16-r) !}& =\dfrac{1}{(16-r) !(r+2)(r+1)} \\
\Rightarrow(r+2)(r+1)&=(18-r)(17-r) \\
\Rightarrow r^2+3 r+2&=306-18 r-17 r+r^2 \\
\Rightarrow 3 r+2&=306-35 r \\
\Rightarrow 38 r&=304 \\
\Rightarrow r&=\dfrac{304}{38}=8 . \\
\text { Now }{ }^r C_5&={ }^8 C_5=\dfrac{8 !}{(8-5) ! 5 !}=56\end{align}
====Go To====
[[math-11-kpk:sol:unit06:Re-ex6-p1 |< Question 1 ]]
[[math-11-kpk:sol:unit06:Re-ex6-p3|Question 3 & 4 >]]