====== Question 3 & 4 Review Exercise 6 ======
Solutions of Question 3 & 4 of Review Exercise 6 of Unit 06: Permutation, Combination and Probablity. This is unit of A Textbook of Mathematics for Grade XI is published by Khyber Pakhtunkhwa Textbook Board (KPTB or KPTBB) Peshawar, Pakistan.
=====Question 3=====
${ }^{56} P_{r+6}:{ }^{54} P_{r+3}=30800: 1$. Find $r$.
====Solution====
Given that:
\begin{align}
{ }^{56} P_{r+6}:{ }^{54} P_r+3&=30800: 1 \\
\Rightarrow \dfrac{\dfrac{56 !}{[56-(r+6)] !}}{\dfrac{54 !}{[54-(r+3)] !}}&=\dfrac{30800}{1} \\
\Rightarrow \dfrac{56 !}{(50-r) !} \times \dfrac{(51-r) !}{54 !}&=30800 \\
\Rightarrow \dfrac{56.55 .54 !}{(50-r) !} \times \dfrac{(51-r)(50-r) !}{54 !}& =30800 \\
\Rightarrow \dfrac{3080}{1} \times \dfrac{51-r}{1}&=30800\\
\Rightarrow 51-r&=\dfrac{30800}{3080} \\
\Rightarrow r&=51-10=41\end{align}
=====Question 4=====
In how many distinct ways can $x^4 y^3 z^5$ can be expressed without exponents?
====Solution====
We can write the word $x^4 y^3 z^5$ as:
$$x^4 y^3 z^5=x . x . x . x . y . y . y . z . z . z . z . z $$
The total number of letter in this word are twelve,
so $n=12$ out of which four are $x$ so, $m_1=4$,
three are $y$ so $m_2=3$, and five are $z$, so $m_3=5$.
Thus total number of ways that $x^4 y^3 z^5$ can be arrange are
\begin{align}
& \left(\begin{array}{c}
n \\
m_1, m_2, m_3
\end{array}\right)=\left(\begin{array}{c}
12 \\
4,3,5
\end{array}\right)&=\dfrac{12 !}{4 ! 3 ! 5 !} \\
& =\dfrac{12 \cdot 11 \cdot 10 \cdot 9 \cdot 8 \cdot 7 \cdot 6 \cdot 5 !}{4 ! 3 ! 5 !}=27,720 \end{align}
====Go To====
[[math-11-kpk:sol:unit06:Re-ex6-p2 |< Question 2 ]]
[[math-11-kpk:sol:unit06:Re-ex6-p4|Question 5 & 6 >]]