====== Question 5 & 6 Review Exercise 7 ======
Solutions of Question 5 & 6 of Review Exercise 7 of Unit 07: Permutation, Combination and Probablity. This is unit of A Textbook of Mathematics for Grade XI is published by Khyber Pakhtunkhwa Textbook Board (KPTB or KPTBB) Peshawar, Pakistan.
Q5 What is the constant term in the expansion of $\left(\frac{2}{x^2}+\frac{x^2}{2}\right)^{10}$ ?
Solution: Here $n=10, a^{\prime}=\frac{2}{x^2}$ and $b=\frac{x^2}{2}$. Let $T_{r+1}$ be the term independent of $x$ that is:
$$
\begin{aligned}
& T_{r+1}=\frac{10 !}{(10-r) ! r !}\left(\frac{2}{x^2}\right)^{10 r}\left(\frac{x^2}{2}\right)^r \\
& =\frac{10 !}{(10-r) ! r !} \frac{2^{10} r}{2^r} \cdot x^{2 r} \cdot \frac{1}{x^{20-2 r}} \\
& =\frac{10 !}{(10 r) ! r !} 2^{102 r} x^{2 r} 20+2 r \\
& =\frac{10 !}{(10-r) ! r !} 2^{10-2 r} x^{4 r-20}
\end{aligned}
$$
But the term $T_{r+1}$ is independent of $x$ is possible only if $x^{4 r-20}=x^0$
$$
\Rightarrow 4 r-20=0 \Rightarrow r=5 \text {. }
$$
Putting in $T_{r+1}$ we get
$$
T_{5+1}=\frac{10 !}{5 ! 5 !} \cdot 2^0 \cdot x^0
$$
$$
\Rightarrow \quad T_6=252 .
$$
Hence $T_6$ is constant term in the expansion which is 252.
Q6 Find an approximation of $(0.99)^5$ using the first three terms of its expansion.
Solution: We can write
$$
(0.99)^5=(1-0.01)^5
$$
Using binomial theorem, we have
$$
\begin{aligned}
& (1-0.01)^5 \cong{ }^5 C_0-{ }^5 C_1(0.01) \\
& +{ }^5 C_2(-0.01)^2 \\
& =1-5(0.01)+10(0.0001) \\
& =0.951 .
\end{aligned}
$$
Thus $(0.99) 65 \cong 0.951$.
====Go To====
[[math-11-kpk:sol:unit07:Re-ex7-p3 |< Question 3 & 4 ]]
[[math-11-kpk:sol:unit07:Re-ex7-p5|Question 7 & 8 >]]