====== Question 8, Exercise 10.1 ======
Solutions of Question 8 of Exercise 10.1 of Unit 10: Trigonometric Identities of Sum and Difference of Angles. This is unit of A Textbook of Mathematics for Grade XI is published by Khyber Pakhtunkhwa Textbook Board (KPTB or KPTBB) Peshawar, Pakistan.
=====Question 8(i)=====
Prove that: $\tan \left( \dfrac{\pi }{4}+\theta \right)=\dfrac{\cos \theta +\sin \theta }{\cos \theta -\sin \theta }$
====Solution====
\begin{align}L.H.S.&=\tan \left( \dfrac{\pi }{4}+\theta \right)\\
&=\dfrac{\sin \left( \dfrac{\pi }{4}+\theta \right)}{\cos \left( \dfrac{\pi }{4}+\theta \right)}\\
&=\dfrac{\sin\dfrac{\pi }{4}\cos \theta +\cos\dfrac{\pi }{4}\sin\theta}{\cos\dfrac{\pi}{4}\cos \theta -\sin \dfrac{\pi }{4}\sin \theta }\\
&=\dfrac{\dfrac{1}{\sqrt{2}}\cos \theta +\dfrac{1}{\sqrt{2}}\sin\theta}{\dfrac{1}{\sqrt{2}}\cos \theta -\dfrac{1}{\sqrt{2}}\sin \theta }\\
&=\dfrac{\dfrac{1}{\sqrt{2}}\left(\cos\theta +\sin\theta\right)}{\dfrac{1}{\sqrt{2}}\left(\cos \theta -\sin\theta\right)}\\
&=\dfrac{\cos \theta +\sin\theta }{\cos\theta -\sin\theta }=R.H.S.\end{align}
=====Question 8(ii)=====
Prove that: $\tan \left( \dfrac{\pi }{4}-\theta \right)=\dfrac{1-tan\theta }{1+tan\theta }$
====Solution====
\begin{align}L.H.S.&=\tan \left( \dfrac{\pi }{4}-\theta \right)\\
&=\dfrac{\sin \left( \dfrac{\pi }{4}-\theta \right)}{\cos \left( \dfrac{\pi }{4}-\theta \right)}\\
&=\dfrac{\sin \dfrac{\pi }{4}\cos \theta -\sin \theta \cos \dfrac{\pi }{4}}{\cos \dfrac{\pi }{4}\cos \theta +\sin \dfrac{\pi }{4}\sin \theta }\\
&=\dfrac{\dfrac{1}{\sqrt{2}}\cos \theta -\sin \theta \dfrac{1}{\sqrt{2}}}{\dfrac{1}{\sqrt{2}}\cos \theta +\dfrac{1}{\sqrt{2}}\sin \theta }\\
&=\dfrac{\cos \theta -\sin \theta }{\cos \theta +\sin \theta }\\
&=\dfrac{\cos \theta \left( 1-\dfrac{\sin \theta }{\cos \theta } \right)}{\cos \theta \left( 1+\dfrac{\sin \theta }{\cos \theta } \right)}\\
&=\dfrac{\left( 1-\tan \theta \right)}{\left( 1+\tan \theta \right)}\\
&=R.H.S.\end{align}
===Alternative Method===
\begin{align}L.H.S.&=\tan\left( \dfrac{\pi }{4}-\theta \right)\\
&=\dfrac{\tan\frac{\pi }{4}-\tan\theta}{1+\tan\frac{\pi }{4}\tan\theta}\\
&=\dfrac{1-\tan\theta}{1+1\cdot\tan\theta } \quad \because \tan\dfrac{\pi}{4}=1\\
&=\dfrac{\left( 1-\tan \theta \right)}{\left( 1+\tan \theta \right)}\\
&=R.H.S.\end{align}
=====Question 8(iii)=====
Prove that: $\dfrac{\tan \left( \alpha +\beta \right)}{\cot \left( \alpha -\beta \right)}=\dfrac{{{\tan }^{2}}\alpha -{{\tan }^{2}}\beta }{1-{{\tan }^{2}}\alpha {{\tan }^{2}}\beta }$
====Solution====
\begin{align}\tan (\alpha +\beta )&=\dfrac{\tan \alpha +\tan \beta }{1-\tan \alpha \tan \beta }\\
\cot (\alpha -\beta )&=\dfrac{1+\tan \alpha \tan \beta }{\tan \alpha -\tan \beta }\\
L.H.S.&=\dfrac{\tan \left( \alpha +\beta \right)}{\cot \left( \alpha -\beta \right)}\\
&=\dfrac{\dfrac{\tan \alpha +\tan \beta }{1-\tan \alpha \tan \beta }}{\dfrac{1+\tan \alpha \tan \beta }{\tan \alpha -\tan \beta }}\\
&=\dfrac{\left( \tan \alpha +\tan \beta \right)\left( \tan \alpha -\tan \beta \right)}{\left( 1+\tan \alpha \tan \beta \right)\left( 1-\tan \alpha \tan \beta \right)}\\
&=\dfrac{{{\tan }^{2}}\alpha -{{\tan }^{2}}\beta }{1-{{\tan }^{2}}\alpha {{\tan }^{2}}\beta }\\
&=R.H.S.\end{align}
=====Question 8(iv)=====
Prove that: $\dfrac{1-\tan \theta \tan \phi }{1+\tan \theta \tan \phi }=\dfrac{\cos \left( \theta +\phi \right)}{\cos \left( \theta -\phi \right)}$
====Solution====
\begin{align}L.H.S.&=\dfrac{1-\tan \theta \tan \phi }{1+\tan \theta \tan \phi }\\
&=\dfrac{1-\dfrac{\sin \theta }{\cos \theta }\dfrac{\sin \phi }{\cos \phi }}{1+\dfrac{\sin \theta }{\cos \theta }\dfrac{\sin \phi }{\cos \phi }}\\
&=\dfrac{\dfrac{\cos \theta \cos \phi -\sin \theta \sin \phi }{\cos \theta \cos \phi }}{\dfrac{\cos \theta \cos \phi +\sin \theta \sin \phi }{\cos \theta \cos \phi }}\\
&=\dfrac{\cos \theta \cos \phi -\sin \theta \sin \phi }{\cos \theta \cos \phi +\sin \theta \sin \phi }\\
&=\dfrac{\cos \left( \theta +\phi \right)}{\cos \left( \theta -\phi \right)}\\
&=R.H.S.\end{align}
====Go to====
[[math-11-kpk:sol:unit10:ex10-1-p7|< Question 7]]
[[math-11-kpk:sol:unit10:ex10-1-p9|Question 9,10 >]]