====== Question 1, Exercise 10.3 ====== Solutions of Question 1 of Exercise 10.3 of Unit 10: Trigonometric Identities of Sum and Difference of Angles. This is unit of A Textbook of Mathematics for Grade XI is published by Khyber Pakhtunkhwa Textbook Board (KPTB or KPTBB) Peshawar, Pakistan. There are four parts in Question 1. =====Question 1(i)===== Express the product as sum or difference $2\sin 6x\sin x$. ====Solution==== We have an identity: $$-2\sin \alpha \sin \beta =\cos (\alpha +\beta )-\cos (\alpha -\beta ).$$ Put $\alpha =6x$ and $\beta =x$ \begin{align}-\,2\sin 6x\sin x&=\cos (6x+x)-\cos (6x-x)\\ &=\cos 7x-\cos x\\ 2\sin 6x\sin x&=\cos 5\theta -\cos 7\theta\end{align} =====Question 1(ii)===== Express the product as sum or difference $\sin {{55}^{\circ }}\cos {{123}^{\circ }}$. ====Solution==== We have an identity: $$2\sin \alpha \cos \beta =\sin (\alpha +\beta )+\sin (\alpha -\beta )$$ Put $\alpha ={{55}^{\circ }}$ and $\beta ={{123}^{\circ }}$ \begin{align}2\sin {{55}^{\circ }}\cos {{123}^{\circ }}&=\sin ({{55}^{\circ }}+{{123}^{\circ }})+\sin ({{55}^{\circ }}-{{123}^{\circ }})\\ &=\sin {{178}^{\circ }}+\sin(-68^\circ)\\ &=\sin {{178}^{\circ }}-\sin {{68}^{\circ }}\\ \implies \sin {{55}^{\circ }}\cos {{123}^{\circ }}&=\dfrac{1}{2} \left[ \sin {{178}^{\circ }}-\sin {{68}^{\circ }} \right]. \end{align} =====Question 1(iii)===== Express the product as sum or difference: $$\sin \dfrac{A+B}{2}\cos \dfrac{A-B}{2}.$$ ====Solution==== We have an identity: $$2\sin \alpha \cos \beta =\sin (\alpha +\beta )+\sin (\alpha -\beta )$$ Put $\alpha =\dfrac{A+B}{2}$ and $\beta =\dfrac{A-B}{2}$ \begin{align}& 2\sin \dfrac{A+B}{2}\cos \dfrac{A-B}{2}\\ &=\sin \left(\dfrac{A+B}{2}+\dfrac{A-B}{2}\right)+\sin \left(\dfrac{A+B}{2}-\dfrac{A-B}{2} \right)\\ &=\sin A+\sin B.\end{align} $$\implies \sin \dfrac{A+B}{2}\cos \dfrac{A-B}{2}=\dfrac{1}{2}\left( \sin A+\sin B \right).$$ =====Question 1(iv)===== Express the product as sum or difference: $$\cos \dfrac{P+Q}{2}\cos \dfrac{P-Q}{2}.$$ ====Solution==== We have an identity: $$2\cos \alpha \cos \beta =\cos \left( \alpha +\beta \right)+\cos \left( \alpha -\beta \right)$$ Put $\alpha =\dfrac{P+Q}{2}$ and $\beta =\dfrac{P-Q}{2}$ \begin{align}& 2\cos \dfrac{P+Q}{2}\cos \dfrac{P-Q}{2}\\ &=\cos \left(\dfrac{P+Q}{2}+\dfrac{P-Q}{2}\right)-\cos \left(\dfrac{P+Q}{2}-\dfrac{P-Q}{2}\right)\\ &=\cos P-\cos Q \end{align} $$\implies\sin \dfrac{P+Q}{2}\cos \dfrac{P-Q}{2}=\dfrac{1}{2}\left( \cos P-\cos Q \right)$$ ====Go to==== [[math-11-kpk:sol:unit10:ex10-3-p2|Question 2 >]]