====== Question 1, Review Exercise 10 ======
Solutions of Question 1 of Review Exercise 10 of Unit 10: Trigonometric Identities of Sum and Difference of Angles. This is unit of A Textbook of Mathematics for Grade XI is published by Khyber Pakhtunkhwa Textbook Board (KPTB or KPTBB) Peshawar, Pakistan.
===== Question 1 =====
Chose the correct option.
i. $\cos {{50}^{\circ }}5{0}'\cos {{9}^{\circ }}1{0}'-\sin {{50}^{\circ }}5{0}'\sin {{9}^{\circ }}1{0}'=$
* (a) $0$
* (b) $\dfrac{1}{2}$
* %%(c)%% $1$
* (d) $\dfrac{\sqrt{3}}{2}$ \\ See Answer(B): $\dfrac{1}{2}$
ii. If $\tan {{15}^{\circ }}=2-\sqrt{3}$, then the value of ${{\cot }^{2}}{{75}^{\circ }}$ is
* (a) $7+\sqrt{3}$
* (b) $7-2\sqrt{3}$
* %%(c)%% $7-4\sqrt{3}$
* (d) $7+4\sqrt{3}$ \\ See Answer(B): $\dfrac{1}{2}$
iii. If $\tan \left( \alpha +\beta \right)=\dfrac{1}{2}$, and $\tan \alpha =\dfrac{1}{3}$ then $\tan \beta =$
* (a) $\dfrac{1}{6}$
* (b) $\dfrac{1}{7}$
* %%(c)%% $1$
* (d) $\dfrac{7}{6}$ \\ See Answer(B): $\dfrac{1}{2}$
iv. $\sin \theta \cos \left( {{90}^{\circ }}-\theta \right)+\cos \theta \sin \left( {{90}^{\circ }}-\theta \right)=$
* (a) $-1$
* (b) $2$
* %%(c)%% $0$
* (d) $1$ \\ See Answer(B): $\dfrac{1}{2}$
v. Simplified expression of $\left( \sec \theta +\tan \theta \right)\left( 1-\sin \theta \right)$ is
* (a) ${{\sin }^{2}}\theta$
* (b) ${{\cos }^{2}}\theta$
* %%(c)%% $ta{{n}^{2}}\theta$
* (d) $\cos \theta$ \\ See Answer(B): $\dfrac{1}{2}$
vi. $\sin \left( x-\frac{\pi }{2} \right)=$ is
* (a) $\sin x$
* (b) $-\sin x$
* %%(c)%% $\cos x$
* (d) $-\cos x$ \\ See Answer(B): $\dfrac{1}{2}$
vii. A point is in Quadrant-III and on the unit circle. If its x-coordinate is $-\dfrac{4}{5},$ what is the y-coordinate of the point?
* (a) $\dfrac{3}{5}$
* (b) $-\dfrac{3}{5}$
* %%(c)%% $-\dfrac{2}{5}$
* (d) $\dfrac{5}{3}$ \\ See Answer(B): $\dfrac{1}{2}$
viii. Which of the following is an identity?
* (a) $\sin \left( a \right)\cos \left( a \right)=\left( \dfrac{1}{2} \right)\left( \sin 2a \right)$
* (b) $\sin a+\cos a=1$
* %%(c)%% $\sin \left( -a \right)=\sin a$
* (d) $\tan a=\dfrac{\cos a}{\sin a}$ \\ See Answer(a): $\sin \left( a \right)\cos \left( a \right)=\left( \dfrac{1}{2} \right)\left( \sin 2a \right)$
===Go to===
[[math-11-kpk:sol:unit10:re-ex10-p2|Question 2 & 3 >]]