====== Question 1, Review Exercise 10 ====== Solutions of Question 1 of Review Exercise 10 of Unit 10: Trigonometric Identities of Sum and Difference of Angles. This is unit of A Textbook of Mathematics for Grade XI is published by Khyber Pakhtunkhwa Textbook Board (KPTB or KPTBB) Peshawar, Pakistan. ===== Question 1 ===== Chose the correct option. i. $\cos {{50}^{\circ }}5{0}'\cos {{9}^{\circ }}1{0}'-\sin {{50}^{\circ }}5{0}'\sin {{9}^{\circ }}1{0}'=$ * (a) $0$ * (b) $\dfrac{1}{2}$ * %%(c)%% $1$ * (d) $\dfrac{\sqrt{3}}{2}$ \\ See Answer(B): $\dfrac{1}{2}$ ii. If $\tan {{15}^{\circ }}=2-\sqrt{3}$, then the value of ${{\cot }^{2}}{{75}^{\circ }}$ is * (a) $7+\sqrt{3}$ * (b) $7-2\sqrt{3}$ * %%(c)%% $7-4\sqrt{3}$ * (d) $7+4\sqrt{3}$ \\ See Answer(B): $\dfrac{1}{2}$ iii. If $\tan \left( \alpha +\beta \right)=\dfrac{1}{2}$, and $\tan \alpha =\dfrac{1}{3}$ then $\tan \beta =$ * (a) $\dfrac{1}{6}$ * (b) $\dfrac{1}{7}$ * %%(c)%% $1$ * (d) $\dfrac{7}{6}$ \\ See Answer(B): $\dfrac{1}{2}$ iv. $\sin \theta \cos \left( {{90}^{\circ }}-\theta \right)+\cos \theta \sin \left( {{90}^{\circ }}-\theta \right)=$ * (a) $-1$ * (b) $2$ * %%(c)%% $0$ * (d) $1$ \\ See Answer(B): $\dfrac{1}{2}$ v. Simplified expression of $\left( \sec \theta +\tan \theta \right)\left( 1-\sin \theta \right)$ is * (a) ${{\sin }^{2}}\theta$ * (b) ${{\cos }^{2}}\theta$ * %%(c)%% $ta{{n}^{2}}\theta$ * (d) $\cos \theta$ \\ See Answer(B): $\dfrac{1}{2}$ vi. $\sin \left( x-\frac{\pi }{2} \right)=$ is * (a) $\sin x$ * (b) $-\sin x$ * %%(c)%% $\cos x$ * (d) $-\cos x$ \\ See Answer(B): $\dfrac{1}{2}$ vii. A point is in Quadrant-III and on the unit circle. If its x-coordinate is $-\dfrac{4}{5},$ what is the y-coordinate of the point? * (a) $\dfrac{3}{5}$ * (b) $-\dfrac{3}{5}$ * %%(c)%% $-\dfrac{2}{5}$ * (d) $\dfrac{5}{3}$ \\ See Answer(B): $\dfrac{1}{2}$ viii. Which of the following is an identity? * (a) $\sin \left( a \right)\cos \left( a \right)=\left( \dfrac{1}{2} \right)\left( \sin 2a \right)$ * (b) $\sin a+\cos a=1$ * %%(c)%% $\sin \left( -a \right)=\sin a$ * (d) $\tan a=\dfrac{\cos a}{\sin a}$ \\ See Answer(a): $\sin \left( a \right)\cos \left( a \right)=\left( \dfrac{1}{2} \right)\left( \sin 2a \right)$ ===Go to=== [[math-11-kpk:sol:unit10:re-ex10-p2|Question 2 & 3 >]]