====== Question 2 and 3, Review Exercise 10 ======
Solutions of Question 2 and 3 of Review Exercise 10 of Unit 10: Trigonometric Identities of Sum and Difference of Angles. This is unit of A Textbook of Mathematics for Grade XI is published by Khyber Pakhtunkhwa Textbook Board (KPTB or KPTBB) Peshawar, Pakistan.
=====Question 2=====
Prove the identity $\dfrac{2\sin \theta \sin 2\theta }{\cos \theta +\cos 3\theta }=\tan 2\theta \tan \theta $.
====Solution====
\begin{align}L.H.S.&=\dfrac{2\sin \theta \sin 2\theta }{\cos \theta +\cos 3\theta }\\
&=\dfrac{2\sin \theta \sin 2\theta }{\cos 3\theta +\cos \theta }\\
&=\dfrac{2\sin \theta \sin 2\theta }{2\cos \dfrac{3\theta +\theta }{2}\cos \dfrac{3\theta -\theta }{2}}\\
&=\dfrac{2\sin \theta \sin 2\theta }{2\cos 2\theta \cos \theta }\\
&=\tan \theta \tan 2\theta =R.H.S.\end{align}
=====Question 3=====
Prove the identity $\dfrac{\sin 10a-\sin 4a}{\sin 4a+\sin 2a}=\dfrac{\cos 7a}{\cos a}$.
====Solution====
\begin{align}L.H.S.&=\dfrac{\sin 10a-\sin 4a}{\sin 4a+\sin 2a}\\
&=\dfrac{2\cos \left( \dfrac{10a+4a}{2} \right)\sin \left( \dfrac{10a-4a}{2} \right)}{2\sin \dfrac{4a+2a}{2}\cos \dfrac{4a-2a}{2}}\\
&=\dfrac{\cos 7a\sin 3a}{\sin 3a\cos a}\\
&=\dfrac{\cos 7a}{\cos a}=R.H.S.\end{align}
====Go to====
[[math-11-kpk:sol:unit10:re-ex10-p1|< Question 1]]
[[math-11-kpk:sol:unit10:re-ex10-p3|Question 4 >]]