====== Question 2, Exercise 1.1 ====== Solutions of Question 2 of Exercise 1.1 of Unit 01: Complex Numbers. This is unit of Model Textbook of Mathematics for Class XI published by National Book Foundation (NBF) as Federal Textbook Board, Islamabad, Pakistan. ====Question 2(i)==== Write the following complex number in the form $x+iy$: $(3+2i)+(2+4i)$ ** Solution. ** \begin{align}&(3+i2)+(2+i4)\\ =&(3+2)+(i2+i4)\\ =&5+i6\end{align} GOOD ====Question 2(ii)==== Write the following complex number in the form $x+iy$: $(4+3i)-(2+5i)$ **Solution.** \begin{align}&(4+3i)-(2+5i)\\ =&(4-2)+(3i-5i)\\ =&2-2i\end{align} GOOD ====Question 2(iii)==== Write the following complex number in the form $x+iy$: $(4+7i)+(4-7i)$ **Solution.** \begin{align} &(4+7i)+(4-7i)\\ =&(4+4)+(7i-7i)\\ =&8+0i. \end{align} GOOD ====Question 2(iv)==== Write the following complex number in the form $x+iy$: $(2+5i)-(2-5i)$ **Solution.** \begin{align} &(2+5i)-(2-5i)\\ =&(2-2)+(5i+5i)\\ =&0+10i. \end{align} GOOD ====Question 2(v)==== Write the following complex number in the form $x+iy$: $(3+2i)(4-3i)$ **Solution.** \begin{align}&(3+2i)(4-3i)\\ =&12-9i+8i-6i^2\\ =&12+6-9i+8i\\ =&18-i\end{align} GOOD ====Question 2(vi)==== Write the following complex number in the form $x+iy$: $(3,2)\div(3,-1)$ **Solution.** \begin{align}&(3,2)\div(3,-1)\\ =&\dfrac{3+2i}{3-i}\\ =&\dfrac{3+2i}{3-i}\times\dfrac{3+i}{3+i}\\ =&\dfrac{(3+2i)(3+i)}{3^2-i^2}\\ =&\dfrac{9+2i^2+6i+3i}{9+1}\\ =&\dfrac{9-2+9i}{10}\\ =&\dfrac{7+9i}{10}\\ =&\dfrac{7}{10}+\dfrac{9}{10}i\end{align} GOOD ====Question 2(vii)==== Write the following complex number in the form $x+iy$: $(1+i)(1-i)(2+i)$ **Solution.** \begin{align}&(1+i)(1-i)(2+i)\\ =&(1+i)(2-i^2+i-2i)\\ =&(1+i)(2+1-i)\\ =&(1+i)(3-i)\\ =&3-i^2+3i-i\\ =&4+2i\end{align} ====Question 2(viii)==== Write the following complex number in the form $x+iy$: $\dfrac{1}{2+3i}$. **Solution.** \begin{align} &\dfrac{1}{2+3i} \\ =&\dfrac{1}{2+3i}\times\dfrac{2-3i}{2-3i} \\ =&\dfrac{2-3i}{4-9i^2}\\ =&\dfrac{2-3i}{4+9}\\ =&\dfrac{2}{13}-\dfrac{3}{13}i.\\ \end{align} GOOD ====Go to ==== [[math-11-nbf:sol:unit01:ex1-1-p1|< Question 1]] [[math-11-nbf:sol:unit01:ex1-1-p3|Question 3 >]] ======