====== Question 4, Exercise 1.1 ====== Solutions of Question 4 of Exercise 1.1 of Unit 01: Complex Numbers. This is unit of Model Textbook of Mathematics for Class XI published by National Book Foundation (NBF) as Federal Textbook Board, Islamabad, Pakistan. ====Question 4(i)==== Find the values of real number $x$ and $y$ in each of the following: $(2+3i)x+(1+3i)y+2=0$ **Solution.** \begin{align}&(2+3i)x+(1+3i)y+2=0\\ \implies &(2x+y+2)+(3x+3y)i=0.\end{align} Comparing real and imaginary parts \begin{align} 2x+y+2&=0 \quad \cdots(1)\\ 3x+3y&=0\quad \cdots (2) \end{align} From (2), \begin{align} &3x=-3y \\ x=-y \quad ... (3) \end{align} Putting value of $x$ in (1) \begin{align}2(-y)+y+2&=0\\ -2y+y&=-2\\ -y&=-2\\ y&=2\end{align} Putting in $(3)$, we have $x=-2$. Hence $x=-2$ and $y=2$. GOOD ====Question 4(ii)==== Find the values of real number $x$ and $y$ in each of the following: $\dfrac{x}{(1+i)}+\dfrac{y}{1-2i}=1$ **Solution.** \begin{align}&\dfrac{x}{(1+i)}+\dfrac{y}{1-2i}=1\\ \implies &\dfrac{x(1-2i)+y(1+i)}{(1+i)(1-2i)}=1\\ \implies &\dfrac{x-i2x+y+iy}{1-2i^2+i-2i}=1\\ \implies &\dfrac{(x+y)+(y-2x)i}{3-i}=1\\ \implies & (x+y)+(y-2x)i=3-i\\ \implies & (x+y-3)+(y-2x+1)i=0.\end{align} Comparing real and imaginary parts \begin{align}&x+y-3=0\cdots\cdots(1)\\ &y-2x+1=0\cdots\cdots(2) \end{align} From $(2)$, we have &y=2x-1\cdots \cdots (3)\end{align} Put the value of $y$ in $(1)$ \begin{align}& x+(2x-1)-3=0\\ \implies &3x-4=0\\ \implies &x=\dfrac{4}{3}\end{align} Put value of $x$ in $(3)$ \begin{align}&y=2(\dfrac{4}{3})-1\\ \implies &y=\dfrac{8}{3}-1\\ \implies &y=\dfrac{5}{3}\end{align} Hence $x=\dfrac{4}{3}$ and $y=\dfrac{5}{3}$. GOOD ====Question 4(iii)==== Find the values of real number $x$ and $y$ in each of the following: $\dfrac{x}{(2+i)}=\dfrac{1-5i}{(3-2i)}+\dfrac{y}{2-i}$ **Solution.** \begin{align}&\dfrac{x}{(2+i)}=\dfrac{(1-5i)(2-i)+y(3-2i)}{(3-2i)(2-i)}\\ \Rightarrow \quad & \dfrac{x}{(2+i)}=\dfrac{(2+5i^2-10i-i)+(3y-2yi)}{(6+2i^2-4i-3i)}\\ \Rightarrow \quad & \dfrac{x}{(2+i)}=\dfrac{(2-5-11i)+(3y-2yi)}{(6+2i^2-4i-3i)}\\ \Rightarrow \quad & \dfrac{x}{(2+i)}=\dfrac{(3y-3)+(-11-2y)i}{(4-7i)}\\ \Rightarrow \quad & x(4-7i)=((3y-3)+(-11-2y)i)(2+i)\\ \Rightarrow \quad & 4x-7xi=(3y-3)(2+i)+(-11i-2yi)(2+i)\\ \Rightarrow \quad & 4x-7xi=6y-6+3yi-3i-22i-4yi-11i^2-2yi^2\\ \Rightarrow \quad & 4x-7xi=6y-6+3yi-3i-22i-4yi+11+2y\\ \Rightarrow \quad & 4x-7xi=8y+5-25i-yi\\ \Rightarrow \quad & 4x-7xi=8y+5+(-25-y)i\end{align} Now do yourself. ====Question 4(iv)==== Find the values of real number $x$ and $y$ in each of the following: $x(1+i)^2+y(2-i)^2=3+10i$ **Solution.** \begin{align}&x(1+i)^2+y(2-i)^2=3+10i\\ \Rightarrow \quad &x(1+i^2+2i)+y(4+i^2-4i)=3+10i\\ \Rightarrow \quad &x(1-1+2i)+y(4-1-4i)=3+10i\\ \Rightarrow \quad &2xi+y(3-4i)=3+10i\\ \Rightarrow \quad &3y+(2x-4y)i=3+10i\\ \Rightarrow \quad &3y+(2x-4y)i=3+10i\end{align} Now do yourself ====Go to ==== [[math-11-nbf:sol:unit01:ex1-1-p3|< Question 3]] [[math-11-nbf:sol:unit01:ex1-1-p5|Question 5 >]]