====== Question 7, Exercise 1.2 ======
Solutions of Question 7 of Exercise 1.2 of Unit 01: Complex Numbers. This is unit of Model Textbook of Mathematics for Class XI published by National Book Foundation (NBF) as Federal Textbook Board, Islamabad, Pakistan.
====Question 7====
Verify that $\sqrt{2}|z| \geq|\operatorname{Re}(z)|+|\operatorname{Im}(z)| \quad$ Hint: (Start with $\left(|x|-|y|)^{2} \geq 0\right)$
**Solution.**
As
\begin{align}
&\left(|x|-|y|)^{2} \geq 0\right) \\
\implies & |x|^2+|y|^2-2|x||y| \geq 0 \\
\implies & |x|^2+|y|^2 \geq 2|x||y| \\
\implies & 2|x|^2+2|y|^2 \geq |x|^2+|y|^2+2|x||y| \\
\implies & 2(x^2+y^2) \geq\left(|x|+|y|\right)^2 \quad \because |x|^2=x^2\\
\implies & 2|z|^2 \geq \left(|Re(z)|+|Im(z)|\right)^2
\end{align}
This ultimately gives us
$$\sqrt{2} |z| \geq |Re(z)|+|Im(z)|.$$
====Go to ====
[[math-11-nbf:sol:unit01:ex1-2-p6|< Question 6]]
[[math-11-nbf:sol:unit01:ex1-2-p8|Question 8 >]]