====== Question 9, Exercise 1.2 ====== Solutions of Question 9 of Exercise 1.2 of Unit 01: Complex Numbers. This is unit of Model Textbook of Mathematics for Class XI published by National Book Foundation (NBF) as Federal Textbook Board, Islamabad, Pakistan. ====Question 9(i)==== Find real and imaginary parts of $(2+4 i)^{-1}$. **Solution.** Suppose $z=2+4i$. \begin{align} Re(2+4i)^{-1} & = Re(z^{-1}) = \dfrac{Re(z)}{|z|^2} \\ & =\dfrac{2}{2^2+4^2} = \dfrac{2}{20}\\ &= \dfrac{1}{10}. \end{align} \begin{align} Im(2+4i)^{-1} & = Im(z^{-1}) = -\dfrac{Im(z)}{|z|^2} \\ & =-\dfrac{4}{2^2+4^2} = -\dfrac{4}{20}\\ &= \dfrac{1}{5}. \end{align} GOOD ====Question 9(ii)==== Find real and imaginary parts of $(3-\sqrt{-4})^{-2}$. **Solution.** Suppose $z=3 - \sqrt{-4}=3-2i$. We will use the following formulas: \[\text{Re}(z^{-2}) = \frac{(\text{Re}(z))^2 - (\text{Im}(z))^2}{|z|^4},\] \[\text{Im}(z^{-2}) = \frac{-2 \text{Re}(z) \text{Im}(z)}{|z|^4}. \] First, note $Re(z)=3$, $Im(z)=-2$ and \begin{align} |z| &= \sqrt{3^2 + (-2)^2} \\&= \sqrt{13}. \end{align} Then \[|z|^4=169.\] Using in above formulas \begin{align} Re((3 - 2i)^{-2}) &= \frac{(3)^2 - (-2)^2}{(\sqrt{13})^4} \\ &= \frac{9 - 4}{169} = \frac{5}{169}. \end{align} \begin{align} Im((3 - 2i)^{-2}) &= \frac{-2 \cdot 3 \cdot (-2)}{(\sqrt{13})^4}\\ &= \frac{12}{169}. \end{align} Therefore, the real part is \(\dfrac{5}{169}\) and the imaginary part is \(\dfrac{12}{169}\). GOOD ====Question 9(iii)==== Find real and imaginary parts of $\left(\dfrac{7+2 i}{3-i}\right)^{-1}$. **Solution.** We use the following formulas: \[Re\left(\left(\frac{x_1 + i y_1}{x_2 + i y_2}\right)^{-1}\right) = \frac{x_1 x_2 + y_1 y_2}{x_1^2 + y_1^2},\] \[Im\left(\left(\frac{x_1 + i y_1}{x_2 + i y_2}\right)^{-1}\right) = \frac{x_1 y_2 - x_2 y_1}{x_1^2 + y_1^2}.\] For \(z_1 = 7 + 2i\) and \(z_2 = 3 - i\), we have: \[x_1 = 7, \quad y_1 = 2, \quad x_2 = 3, \quad y_2 = -1.\] Using in above formulas: \begin{align} Re\left(\left(\frac{7 + 2i}{3 - i}\right)^{-1}\right) &= \frac{7 \cdot 3 + 2 \cdot (-1)}{7^2 + 2^2}\\ &= \frac{21 - 2}{49 + 4} = \frac{19}{53}. \end{align} \begin{align} Im\left(\left(\frac{7 + 2i}{3 - i}\right)^{-1}\right) &= \frac{7 \cdot (-1) - 3 \cdot 2}{7^2 + 2^2}\\ &= \frac{-7 - 6}{49 + 4} = \frac{-13}{53}. \end{align} Therefore, the real part is \(\dfrac{19}{53}\) and the imaginary part is \(\dfrac{-13}{53}\). ====Question 9(iv)==== Find real and imaginary parts of $\left(\dfrac{4+2 i}{2+5 i}\right)^{-2}$. **Solution.** We will use the following formulas: \begin{align} &Re\left(\left(\frac{x_{1}+i y_{1}}{x_{2}+i y_{2}}\right)^{-2}\right) \\ &= \frac{\left(x_{2}^{2}-y_{2}^{2}\right)\left(x_{1}^{2}-y_{1}^{2}\right) + 4 x_{2} x_{1} y_{2} y_{1}}{\left(x_{1}^{2}+y_{1}^{2}\right)^{2}}\end{align} \begin{align}&Im\left(\left(\frac{x_{1}+i y_{1}}{x_{2}+i y_{2}}\right)^{-2}\right)\\& = \frac{-2 \left[x_{1} y_{1} \left(x_{2}^{2}-y_{2}^{2}\right) - x_{2} y_{2} \left(x_{1}^{2}-y_{1}^{2}\right)\right]}{\left(x_{1}^{2}+y_{1}^{2}\right)^{2}}.\end{align} Given \(z_1 = 4 + 2i\) and \(z_2 = 2 + 5i\), we have: \[x_1 = 4, \quad y_1 = 2, \quad x_2 = 2, \quad y_2 = 5.\] First, we need to compute \(x_1^2 + y_1^2\): \[x_1^2 + y_1^2 = 4^2 + 2^2 = 20.\] Next, compute \(x_2^2 - y_2^2\): \[x_2^2 - y_2^2 = 2^2 - 5^2 = -21.\] Then, compute \(x_1^2 - y_1^2\): \[x_1^2 - y_1^2 = 4^2 - 2^2 = 12.\] Now, compute \(4 x_2 x_1 y_2 y_1\): \[4 x_2 x_1 y_2 y_1 = 4 \cdot 2 \cdot 4 \cdot 5 \cdot 2 = 320.\] Now, we can compute the real part: \begin{align} &Re\left(\left(\frac{4 + 2i}{2 + 5i}\right)^{-2}\right)\\ = &\frac{\left(x_2^2 - y_2^2\right)\left(x_1^2 - y_1^2\right) + 4 x_2 x_1 y_2 y_1}{\left(x_1^2 + y_1^2\right)^2} \\ = &\frac{(-21) \cdot 12 + 320}{20^2}\\ = &\frac{-252 + 320}{400}\\ = &\frac{17}{100}. \end{align} Next, we compute the imaginary part: \begin{align} &Im\left(\left(\frac{4 + 2i}{2 + 5i}\right)^{-2}\right)\\ &= \frac{-2 \left[x_1 y_1 \left(x_2^2 - y_2^2\right) - x_2 y_2 \left(x_1^2 - y_1^2\right)\right]}{\left(x_1^2 + y_1^2\right)^2} \end{align} First, compute \(x_1 y_1 \left(x_2^2 - y_2^2\right)\): \[x_1 y_1 \left(x_2^2 - y_2^2\right) = 4 \cdot 2 \cdot (-21) = -168.\] Next, compute \(x_2 y_2 \left(x_1^2 - y_1^2\right)\): \[x_2 y_2 \left(x_1^2 - y_1^2\right) = 2 \cdot 5 \cdot 12 = 120.\] Thus, \begin{align} &Im\left(\left(\frac{4 + 2i}{2 + 5i}\right)^{-2}\right) \\ &= \frac{-2 \left[-168 - 120\right]}{400} \\ &= \frac{-2 \cdot (-288)}{400}\\ &= \frac{36}{25} \end{align} So, the real part of \(\left(\dfrac{4+2i}{2+5i}\right)^{-2}\) is \(\dfrac{17}{100}\) and the imaginary part is \(\dfrac{36}{25}\). ====Question 9(v)==== Find real and imaginary parts of $\left(\dfrac{5-4 i}{5+4 i}\right)^{2}$. **Solution.** We will use the following formulas: \[\text{Re}\left(\left(\frac{x_1 + i y_1}{x_2 + i y_2}\right)^2\right) = \frac{\left(x_1^2 - y_1^2\right)\left(x_2^2 - y_2^2\right) + 4 x_1 x_2 y_1 y_2}{\left(x_2^2 + y_2^2\right)^2}.\] \[\text{Im}\left(\left(\frac{x_1 + i y_1}{x_2 + i y_2}\right)^2\right) = \frac{2 \left[x_1 y_1 \left(x_2^2 - y_2^2\right) - x_2 y_2 \left(x_1^2 - y_1^2\right)\right]}{\left(x_2^2 + y_2^2\right)^2}.\] For \(z_1 = 5 - 4i\) and \(z_2 = 5 + 4i\), we have: \[x_1 = 5, \quad y_1 = -4, \quad x_2 = 5, \quad y_2 = 4.\] First, calculate: \[x_2^2 + y_2^2 = 5^2 + 4^2 = 25 + 16 = 41\] Now, calculate the real part: \begin{align} &\text{Re}\left(\left(\frac{5 - 4i}{5 + 4i}\right)^2\right) \\ = &\frac{\left(5^2 - (-4)^2\right)\left(5^2 - 4^2\right) + 4 \cdot 5 \cdot 5 \cdot (-4) \cdot 4}{\left(5^2 + 4^2\right)^2}\\ = &\frac{\left(25 - 16\right)\left(25 - 16\right) + 4 \cdot 5 \cdot 5 \cdot (-4) \cdot 4}{41^2} \\ = &\frac{9 \cdot 9 + 4 \cdot 5 \cdot 5 \cdot (-4) \cdot 4}{1681} \\ = &\frac{-1519}{1681} \end{align} Next, we calculate the imaginary part: \begin{align} &\text{Im}\left(\left(\frac{5 - 4i}{5 + 4i}\right)^2\right)\\ =& \frac{2 \left[5 \cdot (-4) \left(5^2 - 4^2\right) - 5 \cdot 4 \left(5^2 - (-4)^2\right)\right]}{\left(5^2 + 4^2\right)^2}\\ =&\frac{2 \left[5 \cdot (-4) \left(25 - 16\right) - 5 \cdot 4 \left(25 - 16\right)\right]}{41^2}\\ =& \frac{2 \left[5 \cdot (-4) \cdot 9 - 5 \cdot 4 \cdot 9\right]}{1681} \\ =& \frac{2 \left[-20 \cdot 9 - 20 \cdot 9\right]}{1681}\\ =& \frac{-720}{1681} \end{align} Therefore, the real part of \(\left(\dfrac{5 - 4i}{5 + 4i}\right)^2\) is \(\dfrac{-1519}{1681}\) and the imaginary part is \(\dfrac{-720}{1681}\). ====Question 9(vi)==== Find real and imaginary parts of $\dfrac{3-7 i}{2+5 i}$. **Solution.** We will use the given formulas: \[\text{Re}\left(\frac{x_{1}+i y_{1}}{x_{2}+i y_{2}}\right)=\frac{x_{1} x_{2}+y_{1} y_{2}}{x_{2}^{2}+y_{2}^{2}}\] \[\text{Im}\left(\frac{x_{1}+i y_{1}}{x_{2}+i y_{2}}\right)=\frac{x_{2} y_{1}-x_{1} y_{2}}{x_{2}^{2}+y_{2}^{2}}.\] Given \(z_1 = 3 - 7i\) and \(z_2 = 2 + 5i\), we have: \[x_1 = 3, \quad y_1 = -7, \quad x_2 = 2, \quad y_2 = 5.\] First, compute \(x_2^2 + y_2^2\): \[x_2^2 + y_2^2 = 2^2 + 5^2 = 29\] Next, compute \(x_1 x_2 + y_1 y_2\): \[x_1 x_2 + y_1 y_2 = 3 \cdot 2 + (-7) \cdot 5 = -29\] Then, compute \(x_2 y_1 - x_1 y_2\): \[x_2 y_1 - x_1 y_2 = 2 \cdot (-7) - 3 \cdot 5 = -29\] Now, we can compute the real parts: \begin{align} Re\left(\frac{3 - 7i}{2 + 5i}\right) &= \frac{x_1 x_2 + y_1 y_2}{x_2^2 + y_2^2}\\ &= \frac{-29}{29} = -1.\\ \end{align} Now, we can compute the imaginary parts: \begin{align} Im\left(\frac{3 - 7i}{2 + 5i}\right) &= \frac{x_2 y_1 - x_1 y_2}{x_2^2 + y_2^2} \\ &= \frac{-29}{29} = -1. \end{align} So, the real part of \(\dfrac{3 - 7i}{2 + 5i}\) is \(-1\) and the imaginary part is \(-1\). ====Go to ==== [[math-11-nbf:sol:unit01:ex1-2-p8|< Question 8]] [[math-11-nbf:sol:unit01:ex1-2-p10|Question 10 >]]