====== Question 1, Exercise 1.3 ====== Solutions of Question 1 of Exercise 1.3 of Unit 01: Complex Numbers. This is unit of Model Textbook of Mathematics for Class XI published by National Book Foundation (NBF) as Federal Textbook Board, Islamabad, Pakistan. ====Question 1(i)==== Factorize the polynomial into linear functions: $z^{2}+169$. **Solution.** \begin{align} & z^{2} + 169 \\ = & z^{2} - (13i)^2 \\ = &(z + 13i)(z - 13i). \end{align} ====Question 1(ii)==== Factorize the polynomial into linear functions: $2 z^{2}+18$. **Solution.** \begin{align} & 2z^2 + 18 \\ = &2(z^2 - (3i)^2)\\ = &2(z + 3i)(z - 3i) \end{align} ====Question 1(iii)==== Factorize the polynomial into linear functions: $3 z^{2}+363$. **Solution.** \begin{align} & 3z^2 + 363 \\ = & 3(z^2 - (11i)^2)\\ = & 3(z + 11i)(z - 11i) \end{align} ====Question 1(iv)==== Factorize the polynomial into linear functions: $z^{2}+\dfrac{3}{25}$. **Solution.** \begin{align} & z^2 + \dfrac{3}{25} \\ = & z^2 - \left(\dfrac{\sqrt{3}}{5} i \right)^2 \\ = & \left(z + \dfrac{\sqrt{3}}{5}i\right)\left(z - \dfrac{\sqrt{3}}{5}i\right) \end{align} ====Question 1(v)==== Factorize the polynomial into linear functions: $2 z^{3}+3 z^{2}-10 z-15$. **Solution.** Suppose $$ P(z) = 2 z^{3}+3 z^{2}-10 z-15.$$ Since \begin{align}P\left(-\dfrac{3}{2} \right) &= 2\left(-\dfrac{3}{2}\right)^3 + 3\left(-\dfrac{3}{2}\right)^2 - 10\left(-\dfrac{3}{2}\right) - 15\\ &= -\dfrac{27}{4} + \dfrac{27}{4} + 15 - 15 \\ &= 0\end{align} So $z-(-\dfrac{3}{2})=z+\dfrac{3}{2}$ is the factor of polynomial. Then by using synthetic division: \begin{align} \begin{array}{r|rrrr} -\dfrac{3}{2} & 2 & 3 & -10 & -15 \\ & & -3 & 0 & 15 \\ \hline & 2 & 0 & -10 & 0 \\ \end{array}\end{align} Thus \begin{align}& 2z^3 + 3z^2 - 10z - 15 \\ = & \left(z + \dfrac{3}{2}\right)(2 z^2 - 10) \\ = & \frac{1}{2}(2z + 3)\cdot 2(z^2-5) \\ = & (2z + 3)(z^2-(\sqrt{5})^2)\\ = & (2z + 3)(z+\sqrt{5})(z - \sqrt{5})\end{align} ====Question 1(vi)==== Factorize the polynomial into linear functions: $z^{3}-7 z+6$. **Solution.** Suppose $$P(z) = z^3 - 7z + 6.$$ Since $$ P(1) = 1^3 - 7 \cdot 1 + 6 = 0 $$ So $z-(1)=z-1$ is the factor of polynomial. Then by using synthetic division: \begin{align} \begin{array}{c|ccc} 1 & 1 & 0 & -7 & 6 \\ & & 1 & 1 & -6 \\ \hline & 1 & 1 & -6 & 0 \\ \end{array} \end{align} Thus \begin{align} & z^3 - 7z + 6 \\ =& (z-1)(z^2+z-6) \\ =& (z-1)(z^2+3z-2z-6) \\ =& (z-1)(z(z+3)-2(z+3)) \\ =& (z-1)(z-2)(z+3). \end{align} ====Question 1(vii)==== Factorize the polynomial into linear functions: $z^{3}+2 z^{2}-23 z-60$. **Solution.** Given: $$z^{3}+2 z^{2}-23 z-60$$ Putting $z = -3$: \begin{align} (-3)^3 + 2(-3)^2 - 23(-3) - 60 &= -27 + 18 + 69 - 60\\ &= 0\end{align} So $z-(-3)=z+3$ is the factor of polynomial. Then by using synthetic division: Now, by synthetic division: \begin{align} \begin{array}{r|rrrr} -3 & 1 & 2 & -23 & -60 \\ & & -3 & 3 & 60 \\ \hline & 1 & -1 & -20 & 0 \\ \end{array} \end{align} This gives \begin{align} & z^3 + 2z^2 - 23z - 60 \\ & = (z + 3)(z^2 - z - 20)\\ & = (z + 3)(z^2 +4z-5z - 20)\\ & = (z + 3)(z(z + 4)-5(z + 4))\\ &=(z + 3)(z + 4)(z - 5). \end{align} GOOD ====Question 1(viii)==== Factorize the polynomial into linear functions: $2 z^{3}+9 z^{2}-11 z-30$. **Solution.** Suppose $$P(z)=2z^3 + 9z^2 - 11z - 30.$$ Since \begin{align} P(2) & = 2(2)^3 + 9(2)^2 - 11(2) - 30 \\ & = 16 + 36 - 22 - 30 = 0. \end{align} So $z-2$ is the factor of polynomial.\\ Then by using synthetic division: \begin{align} \begin{array}{r|rrrr} 2 & 2 & 9 & -11 & -30 \\ & & 4 & 26 & 30 \\ \hline & 2 & 13 & 15 & 0 \\ \end{array} \end{align} Thus \begin{align} & 2z^3 + 9z^2 - 11z - 30 \\ = & (z - 2)(2z^2 + 13z + 15)\\ =& (z - 2)(2z^2 + 10z + 3z + 15)\\ =&(z - 2) (2z(z + 5) + 3(z + 5)) \\ =&(z - 2) (z + 5) (2z + 3). \end{align} GOOD ====Question 1(ix)==== Factorize the polynomial into linear functions: $z^{2}-7 z-8$. **Solution.** \begin{align} & z^2 - 7z - 8 \\ = & z^2 -8z +z -8 \\ = & z(z-8)+1(z-8) \\ = & (z - 8)(z + 1). \end{align} ====Question 1(x)==== Factorize the polynomial into linear functions: $4 z^{2}-7 z-11$. **Solution.** \begin{align} & 4z^2 - 7z - 11 \\ = & 4z^2 - 11z + 4z -11 \\ = & z(4z-11)+1(4z-1)\\ = &(4z - 11)(z + 1). \end{align} ====Go to ==== [[math-11-nbf:sol:unit01:ex1-3-p2|Question 2>]]