====== Question 2, Exercise 1.4 ======
Solutions of Question 2 of Exercise 1.4 of Unit 01: Complex Numbers. This is unit of Model Textbook of Mathematics for Class XI published by National Book Foundation (NBF) as Federal Textbook Board, Islamabad, Pakistan.
=====Question 2(i)=====
Write the complex number $\left(\cos \dfrac{\pi}{6}+i \sin \dfrac{\pi}{6}\right)\left(\cos \dfrac{\pi}{3}+i \sin \dfrac{\pi}{3}\right)$ in rectangular form.
** Solution. **
Let $z_1=\cos \dfrac{\pi}{6}+i \sin \dfrac{\pi}{6}=e^{i\frac{\pi}{6}}$ and $z_2=\cos \dfrac{\pi}{3}+i \sin \dfrac{\pi}{3}=e^{i\frac{\pi}{3}}$. Then
\begin{align}
z_1 z_2 & = e^{i\frac{\pi}{6}} \cdot e^{i\frac{\pi}{3}} \\
& = e^{i\left(\frac{\pi}{6}+\frac{\pi}{3}\right)} \\
& = e^{i\frac{\pi}{2}} \\
& = \cos \dfrac{\pi}{2} +i \sin \dfrac{\pi}{2} \\
& = 0 + i (1) = i.
\end{align}
Hence, we proved
$$
\left(\cos \dfrac{\pi}{6}+i \sin \dfrac{\pi}{6}\right)\left(\cos \dfrac{\pi}{3}+i \sin \dfrac{\pi}{3}\right) = i.
$$
**Alternative Method:**
\begin{align}
&\left(\cos \dfrac{\pi}{6} + i \sin \dfrac{\pi}{6}\right)\left(\cos \dfrac{\pi}{3} + i \sin \dfrac{\pi}{3}\right)\\
=& \left(\cos \dfrac{\pi}{6} \cos \dfrac{\pi}{3} - \sin \dfrac{\pi}{6} \sin \dfrac{\pi}{3}\right) + i \left(\sin \dfrac{\pi}{6} \cos \dfrac{\pi}{3} + \cos \dfrac{\pi}{6} \sin \dfrac{\pi}{3}\right) \\
=& \left(\dfrac{\sqrt{3}}{2} \cdot \dfrac{1}{2} - \dfrac{1}{2} \cdot \dfrac{\sqrt{3}}{2}\right) + i \left(\dfrac{1}{2} \cdot \dfrac{1}{2} + \dfrac{\sqrt{3}}{2} \cdot \dfrac{\sqrt{3}}{2}\right) \\
=& \left(\dfrac{\sqrt{3}}{4} - \dfrac{\sqrt{3}}{4}\right) + i \left(\dfrac{1}{4} + \dfrac{3}{4}\right) \\
=& 0 + i \cdot 1 \\
=& i
\end{align}
Which is rectangular form.
=====Question 2(ii)=====
Write the complex number $\dfrac{\cos \dfrac{\pi}{6} - i \sin \dfrac{\pi}{6}}{2\left(\cos \dfrac{\pi}{3}+i \sin \dfrac{\pi}{3}\right)}$ in rectangular form.
** Solution. **
\begin{align}
&\dfrac{\cos \dfrac{\pi}{6} - i \sin \dfrac{\pi}{6}}{2\left(\cos \dfrac{\pi}{3} + i \sin \dfrac{\pi}{3}\right)}\\
=&\dfrac{\cos (-\dfrac{\pi}{6}) + i \sin (-\dfrac{\pi}{6})}{2\left(\cos \dfrac{\pi}{3} + i \sin \dfrac{\pi}{3}\right)}\\
=& \dfrac{1}{2} \left[\cos \left(-\dfrac{\pi}{6} -\dfrac{\pi}{3}\right) + i \sin \left(-\dfrac{\pi}{6}- \dfrac{\pi}{3}\right)\right] \\
=& \dfrac{1}{2} \left[\cos \left(-\dfrac{3\pi}{6}\right) + i \sin \left(\dfrac{-3\pi}{6}\right)\right] \\
=& \dfrac{1}{2} \left[\cos \left(\dfrac{-\pi}{2}\right) + i \sin \left(\dfrac{-\pi}{2}\right)\right] \\
=& \dfrac{1}{2} \left[0 - i (1)\right] \\
=& -\dfrac{1}{2}i
\end{align}
Which is rectangular form. GOOD
====Go to ====
[[math-11-nbf:sol:unit01:ex1-4-p1|< Question 1]]
[[math-11-nbf:sol:unit01:ex1-4-p3|Question 3 >]]