====== Question 1, Review Exercise ======
Solutions of Question 1 of Review Exercise of Unit 01: Complex Numbers. This is unit of Model Textbook of Mathematics for Class XI published by National Book Foundation (NBF) as Federal Textbook Board, Islamabad, Pakistan.
===== Question 1 =====
Chose the correct option.
i. Every real number is also a number.
* (a) natural
* (b) integer
* %%(c)%% complex
* (d) rational \\ See Answer%%(c)%%: complex
ii. Every complex number has $\operatorname{part}(\mathrm{s})$.
* (a) one
* (b) two
* %%(c)%% three
* (d) no \\ See Answer(b): two
iii. Magnitude of a complex number $z$ is the distance of $z$ from
* (a) $(0,0)$
* (b)$(1,0)$
* %%(c)%% $(0,1)$
* (d) $(1,1)$ \\ See Answer(a): $(0,0)$
iv. If $z$ is a complex number then its mirror image is
* (a) $|z|$
* (b) $1 / z$
* %%(c)%% $-z$
* (d) $\bar{z}$ \\ See Answer(d): $\bar{z}$
v. In complex plane imaginary part is drawn along
* (a) $x$-axis
* (b) $y$-axis
* %%(c)%% origin
* (d) $x y$-plane \\ See Answer(b): $y$-axis
vi. If $z_{1}=3+2 i$ and $z_{2}=5+6 i$ then
* (a) $z_{1}>z_{2}$
* (b) $z_{1}See Answer(d): $\overline{z_{1}}=-\overline{z_{2}}$
vii. Diagram representing a complex number is called diagram.
* (a) vector
* (b) Venn
* %%(c)%% argand
* (d) ordered pair \\ See Answer%%(c)%%: argand
viii. If $\mathrm{z}=3+4 i$ then $\mathrm{z}^{-1}$ is
* (a) $\left(\frac{1}{3}, \frac{1}{4}\right)$
* (b) $\left(-\frac{1}{3},-\frac{1}{4}\right)$
* %%(c)%% $\left(\frac{3}{25}, \frac{-4}{25}\right)$
* (d) $\left(\frac{3}{25}, \frac{-4}{25}\right)$ \\ See Answer%%(d)%%: $\left(\frac{3}{25}, \frac{-4}{25}\right)$
ix. The value of $(\sqrt{-25})(\sqrt{-4})$ is
* (a) $10$
* (b) $-10$
* %%(c)%% $10 i$
* (d) $-10 i$ \\ See Answer%%(b)%%: $-10$
x. If $\left(\frac{1+i}{1-i}\right)^{n}=1$ then least positive value of $n$ is
* (a) $1$
* (b) $2$
* %%(c)%% $3$
* (d) $4$ \\ See Answer%%(b)%%: $2$[[math-11-nbf:sol:unit01:Re-ex-p2|Question 2 >]]