====== Question 1, Review Exercise ====== Solutions of Question 1 of Review Exercise of Unit 01: Complex Numbers. This is unit of Model Textbook of Mathematics for Class XI published by National Book Foundation (NBF) as Federal Textbook Board, Islamabad, Pakistan. ===== Question 1 ===== Chose the correct option. i. Every real number is also a number. * (a) natural * (b) integer * %%(c)%% complex * (d) rational \\ See Answer%%(c)%%: complex ii. Every complex number has $\operatorname{part}(\mathrm{s})$. * (a) one * (b) two * %%(c)%% three * (d) no \\ See Answer(b): two iii. Magnitude of a complex number $z$ is the distance of $z$ from * (a) $(0,0)$ * (b)$(1,0)$ * %%(c)%% $(0,1)$ * (d) $(1,1)$ \\ See Answer(a): $(0,0)$ iv. If $z$ is a complex number then its mirror image is * (a) $|z|$ * (b) $1 / z$ * %%(c)%% $-z$ * (d) $\bar{z}$ \\ See Answer(d): $\bar{z}$ v. In complex plane imaginary part is drawn along * (a) $x$-axis * (b) $y$-axis * %%(c)%% origin * (d) $x y$-plane \\ See Answer(b): $y$-axis vi. If $z_{1}=3+2 i$ and $z_{2}=5+6 i$ then * (a) $z_{1}>z_{2}$ * (b) $z_{1}See Answer(d): $\overline{z_{1}}=-\overline{z_{2}}$ vii. Diagram representing a complex number is called diagram. * (a) vector * (b) Venn * %%(c)%% argand * (d) ordered pair \\ See Answer%%(c)%%: argand viii. If $\mathrm{z}=3+4 i$ then $\mathrm{z}^{-1}$ is * (a) $\left(\frac{1}{3}, \frac{1}{4}\right)$ * (b) $\left(-\frac{1}{3},-\frac{1}{4}\right)$ * %%(c)%% $\left(\frac{3}{25}, \frac{-4}{25}\right)$ * (d) $\left(\frac{3}{25}, \frac{-4}{25}\right)$ \\ See Answer%%(d)%%: $\left(\frac{3}{25}, \frac{-4}{25}\right)$ ix. The value of $(\sqrt{-25})(\sqrt{-4})$ is * (a) $10$ * (b) $-10$ * %%(c)%% $10 i$ * (d) $-10 i$ \\ See Answer%%(b)%%: $-10$ x. If $\left(\frac{1+i}{1-i}\right)^{n}=1$ then least positive value of $n$ is * (a) $1$ * (b) $2$ * %%(c)%% $3$ * (d) $4$ \\ See Answer%%(b)%%: $2$[[math-11-nbf:sol:unit01:Re-ex-p2|Question 2 >]]