====== Question 2, Review Exercise ====== Solutions of Question 2 of Review Exercise of Unit 01: Complex Numbers. This is unit of Model Textbook of Mathematics for Class XI published by National Book Foundation (NBF) as Federal Textbook Board, Islamabad, Pakistan. ===== Question 2(i) ===== Find the value of the following: $i^{2}+i^{4}+i^{6}+\cdots+i^{100}$\\ ** Solution. ** \begin{align*} & i^{2}+i^{4}+i^{6}+\ldots+i^{100} \\ =& i^2 + (i^2)^2 + (i^2)^3 + (i^2)^4 + \ldots +(i^2)^{49} +(i^2)^{50} \\ =& -1 + (-1)^2 + (-1)^3 + (-1)^4 + \ldots + (-1)^{49}+(-1)^{50} \\ =& -1+1-1+1- \ldots -1+1 \\ =& 0. \end{align*} ===== Question 2(ii) ===== Find the value of the following: $\left|\dfrac{(3-2 i)(1+i)}{2-3 i}\right|$ ** Solution. ** \begin{align} &\left|\dfrac{(3-2i)(1+i)}{2-3i}\right|\\ =& \dfrac{|3-2i||1+i|}{|2-3i|}\\ =&\dfrac{ \sqrt{9 + 4}\sqrt{1 + 1}}{\sqrt{4 + 9}}\\ =& \dfrac{\sqrt{13} \cdot \sqrt{2}}{\sqrt{13}}\\ =& \sqrt{2}\end{align} ===== Question 2(iii) ===== Find the value of the following: $|\overline{(3-2 i)(4-i)}|$ ** Solution. ** \begin{align*} & |\overline{(3-2 i)(4-i)}|\\ =&|(3-2 i)(4-i)|\quad \because \,\, |\bar{z}|=|z|\\ =&|3-2 i||4-i|\\ =&\sqrt{9+4}\sqrt{16+1}\\ =&\sqrt{13}\sqrt{17}=\sqrt{221}. \end{align*} ===== Question 2(iv) ===== Find the value of the following: $\left(\dfrac{3+5 i}{2-3 i}\right)^{-1}$ ** Solution. ** \begin{align*} & \left(\dfrac{3+5 i}{2-3 i}\right)^{-1}\\ =&\dfrac{2-3 i}{3+5 i}\\ =&\dfrac{(2-3 i)(3-5i)}{(3+5 i)(3-5i)}\\ =&\dfrac{6-15-10i-9i}{9+25}\\ =&\dfrac{-9-19i}{34}\\ =&-\dfrac{9}{34}-\dfrac{19}{34}i. \end{align*} ====Go to ==== [[math-11-nbf:sol:unit01:Re-ex-p1|< Question 1]] [[math-11-nbf:sol:unit01:Re-ex-p3|Question 3 >]]