====== Question 1, Exercise 2.3 ====== Solutions of Question 1 of Exercise 2.3 of Unit 02: Matrices and Determinants. This is unit of Model Textbook of Mathematics for Class XI published by National Book Foundation (NBF) as Federal Textbook Board, Islamabad, Pakistan. =====Question 1(i)===== Evaluate the determinant of the matrix $\left[\begin{array}{ccc}2 & 3 & 1 \\ 1 & -1 & 2 \\ 4 & 1 & 2\end{array}\right]$. ** Solution. ** Let \begin{align*} A &= \left[\begin{array}{ccc}2 & 3 & 1 \\ 1 & -1 & 2 \\ 4 & 1 & 2\end{array}\right]\\ |A|&=2(-2-2)-3(2-8)+1(1+4)\\ \implies |A|&=-8+18+5\\ \implies |A|&=15 \end{align*} =====Question 1(ii)===== Evaluate the determinant of the matrix $\left[\begin{array}{ccc}\cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1\end{array}\right]$. ** Solution. ** Let \begin{align*} A&= \left[\begin{array}{ccc}\cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1\end{array}\right]\\ |A| &= cos \theta (cos \theta -0)+ sin \theta(sin \theta -0)+0\\ \implies |A| &= cos^2 \theta + sin^2 \theta\\ \implies |A| &= 1 \end{align*} =====Question 1(iii)===== Evaluate the determinant of the matrix $\left[\begin{array}{ccc}i & 3 & -2 i \\ 1 & 3 & 4 \\ 0 & 1 & 2\end{array}\right]$. ** Solution. ** \begin{align*} A &= \left[\begin{array}{ccc} i & 3 & -2i \\ 1 & 3 & 4 \\ 0 & 1 & 2 \end{array}\right] \\ |A| &= i \left(3 \cdot 2 - 4 \cdot 1\right) - 3 \left(1 \cdot 2 - 4 \cdot 0\right) + (-2i) \left(1 \cdot 1 - 3 \cdot 0\right) \\ &= i (6 - 4) - 3 (2 - 0) + (-2i) (1 - 0) \\ &= i (2) - 3 (2) + (-2i) (1) \\ &= 2i - 6 - 2i \\ &= -6\end{align*} Therefore, the determinant of the matrix \(\left[\begin{array}{ccc} i & 3 & -2i \\ 1 & 3 & 4 \\ 0 & 1 & 2 \end{array}\right]\) is: $$|A| = -6$$ =====Question 1(iv)===== Evaluate the determinant of the matrix $\left[\begin{array}{ccc}2+i & 1 & i \\ 0 & 2 & 1 \\ -3 i & 1 & 6\end{array}\right]$. ** Solution. ** \begin{align*} A &= \left[\begin{array}{ccc} 2+i & 1 & i \\ 0 & 2 & 1 \\ -3i & 1 & 6 \end{array}\right] \\ |A| &= (2+i) \left( 2 \cdot 6 - 1 \cdot 1 \right) - 1 \left( 0 \cdot 6 - 1 \cdot (-3i) \right) + i \left( 0 \cdot 1 - 2 \cdot (-3i) \right) \\ &= (2+i) \left( 12 - 1 \right) - 1 \left( 0 + 3i \right) + i \left( 0 + 6i \right) \\ &= (2+i) \cdot 11 - 3i + 6i^2 \\ &= 22 + 11i - 3i + 6(-1) \quad \text{(since \(i^2 = -1\))} \\ &= 22 + 8i - 6 \\ &= 16 + 8i \end{align*} Therefore, the determinant of the matrix \(\left[\begin{array}{ccc} 2+i & 1 & i \\ 0 & 2 & 1 \\ -3i & 1 & 6 \end{array}\right]\) is: $$ |A| = 16 + 8i$$ ====Go to ==== [[math-11-nbf:sol:unit02:ex2-3-p2|Question 2 >]]